

On the Edgeworth-Kuiper Belt dust flux to Saturn

Andrew R. Poppe (1), Mihály Horányi (2)

(1) Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, USA (2) Lab. for Atmospheric and Space Physics & Dept. of Physics, Univ. of Colorado at Boulder, Boulder, CO, USA (poppe@ssl.berkeley.edu)

Abstract

The Edgeworth-Kuiper Belt (EKB) produces approximately 3×10^7 tons/year of dust grains with radii between 0.1 and $10.0 \mu\text{m}$ through a combination of mutual collisions and bombardment by interstellar dust grains [1]. These grains migrate inward through the outer solar system under the combination of gravity, solar radiation pressure, solar wind drag, and the electromagnetic Lorentz force, forming a tenuous dust halo extending from the orbit of Jupiter out past the classical EKB, and in turn, EKB-generated grains are believed to be the dominant species of dust from Saturn outward [2]. In this talk, we present calculations of the EKB influx into Saturn using a dynamical dust-grain tracing model that is absolutely calibrated to both New Horizons Student Dust Counter and Pioneer 10 meteoroid detector measurements. We discuss the differences of our model with previous estimates of EKB influx to Saturn, and the implications that these differences may have on a variety of phenomena in the saturnian system.

1. EKB Influx to Saturn

The influx of EKB dust grains into the saturnian system drives or influences several physical phenomena, depending on if the grain impacts the planet, one of Saturn's satellites, or the main saturnian ring system. Grains that strike either the planet or Titan directly will ablate in the saturnian or titanian atmosphere, depositing neutral and ionospheric layers [3], which in turn alter the atmospheric chemistry of both Titan and Saturn in distinct ways [4]. If the grain strikes one of Saturn's airless satellites, the impact will typically eject surface material with mass yields greater than unity. The ejected grains will form dusty exospheres or tenuous dust rings, including, for example, the recently-discovered ring originating from Phoebe [5], and the arcs associated with the small saturnian moons Methone, Anthe, and Pallene [6]. Finally, grains that strike the main saturnian ring system can

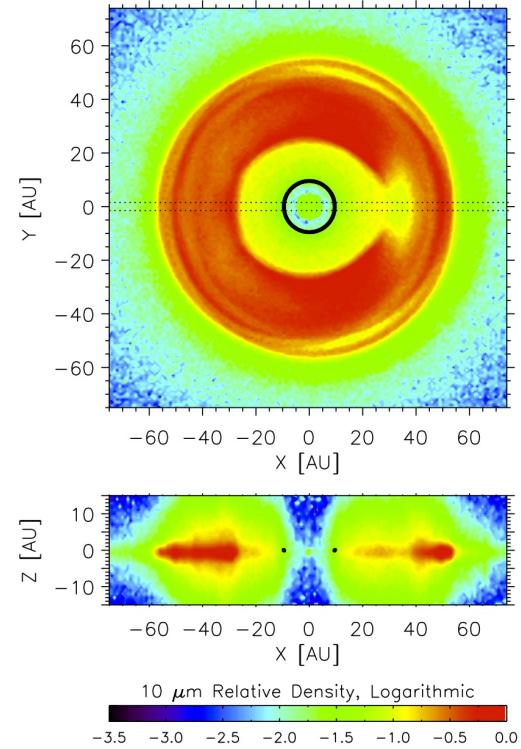


Figure 1: Relative, logarithmic model densities of $10 \mu\text{m}$ EKB grains in the Neptune-rotated frame seen from above the ecliptic and the side view for the cut denoted by the dashed lines. Saturn's orbit is over plotted in black.

induce spatial and compositional changes, including erosion of the C ring, mass and angular momentum transport between the various rings, and shaping of the A and B ring edges [7, 8, 9]. Compositional and color changes in the rings are induced by the introduction of "polluted", non-icy material from impacting micrometeorites and such changes can be used to estimate the age of the main ring system [9].

In order to calculate the influx of micron-sized,

EKB-generated dust grains into the saturnian system, we have employed the results from a dynamical dust grain tracing model, described in detail in [1]. The model consists of a series of equilibrium density and velocity distributions with $1 \times 1 \times 1$ AU resolution for each of eleven grain sizes, $a_d = [0.5, 1.0, 2.0, \dots, 9.0, 10.0] \mu\text{m}$. The absolute density for each grain size is established by using an overall mass production rate of $8.9 \times 10^5 \text{ g/s}$ and a differential mass production distribution, $d\dot{M}/dm = \dot{M}_o(m/m_o)^{-\alpha/3}$, where \dot{M}_o is a constant, $m_o = 10^{-11} \text{ g}$, and $\alpha = 3.02$ [1]. Figure 1 shows the relative density of $10 \mu\text{m}$ grains in the Neptune-rotated frame in the ecliptic x - y and x - z planes with the trajectory of Saturn (in the same frame) over plotted for comparison, showing that Saturn resides well within the EKB dust halo.

We follow Saturn's trajectory in the Neptune-rotated frame and interpolate the dust grain density and velocity distribution from the nearest $1 \times 1 \times 1$ AU grid points for each grain size. The dust grain velocities are vectorially added to the saturnian velocity at each point in order to establish the impact velocity distribution into Saturn before any local gravitational acceleration. The differential influx at each grain size is determined by the product of the EKB grain density and the impact velocity. We find that our predictions of the EKB differential influx into Saturn is significantly different from the Grün *et al.* [1985] model [10], which is often used to estimate dust fluxes in the outer solar system. The discrepancies between the two models is not necessarily surprising, given that the Grün *et al.* [1985] model is based on measurements at 1 AU and knowingly does not include any information about dust grain sources and dynamics in the outer solar system.

While our model is based off of in-situ observations of dust grain density in the outer solar system, we also aim to compare our model with measurements by the Cassini Cosmic Dust Analyzer (CDA), currently making measurements of endogenous and exogenous dust grains in the saturnian system [12]. Additionally, future work includes evaluating the flux and velocity distribution of EKB grains within the Saturnian system, taking into account the gravitational cross-section increase due to Saturn. This information can then be used in quantifying several physical processes in the saturnian system.

References

- [1] D. Han, et al. Constraints on dust production in the Edgeworth-Kuiper Belt from Pioneer 10 and New Horizons measurement. *Geophys. Res. Lett.*, 2011.
- [2] M. Landgraf et al. Origins of Solar System Dust Beyond Jupiter. *The Astronomical Journal*, 123:2857–2861, 2002.
- [3] J. G. Molina-Cuberos, et al. Meteoric Layers in Planetary Atmospheres. *Space Sci. Rev.*, 137:175–191, 2008.
- [4] J. I. Moses and S. F. Bass. The effects of external material on the chemistry and structure of Saturn's ionosphere. *J. Geophys. Res.*, 105(E3):7013–7052, 2000.
- [5] A. J. Verbiscer, et al. Saturn's largest ring. *Nature*, 461, 2009.
- [6] M. M. Hedman, et al. Three tenuous rings/arcs for three tiny moons. *Icarus*, 199:378–386, 2009.
- [7] T. G. Northrop and J. E. P. Connerney. A Micrometeorite Erosion Model and the Age of Saturn's Rings. *Icarus*, 70:124–137, 1987.
- [8] R. H. Durisen, et al. Ballistic Transport in Planetary Ring Systems due to Particle Erosion Mechanisms: III. Torques and Mass Loading by Meteoroid Impacts. *Icarus*, 124:220–236, 1996.
- [9] J. N. Cuzzi and P. R. Estrada. Compositional Evolution of Saturn's Rings Due to Meteoroid Bombardment. *Icarus*, 132:1–35, 1998.
- [10] E. Grün, et al. Collisional balance of the meteoric complex. *Icarus*, 62:244–272, 1985.
- [11] S. J. Bauer. Physics of planetary ionospheres. In S. J. Bauer, editor, *Physics and Chemistry in Space*. Springer, Berlin, 1973.
- [12] R. Srama et al. In situ dust measurements in the inner Saturnian system. *Planet. Space Sci.*, 54:967–987, 2006.