

Observations of Venus Night-Side by CO₂ Absorption Features in the Mid-Infrared

T. Stangier (1,2), M. Sornig (2), G. Sonnabend (1), M. Herrmann (1) and D. Stupar (1)

(1) University of Cologne, Ist Institute of Physics, Germany, (2) RIU - Departement for Planetary Research, Germany
 (stangier@ph1.uni-koeln.de)

Abstract

Ground-based, mid-infrared observations of pressure broadened CO₂ absorption features around 10 μ m, in an altitude region from 65 km to 100 km of the Venusian night side atmosphere will be presented. Spatial variety of the line shape along different longitudes and latitudes are under investigation, in order to determine and validate vertical temperature profiles and to retain information about the dynamical properties of the upper atmosphere. The data were acquired using the two existing infrared heterodyne spectrometers THIS (Tunable Heterodyne Infrared Spectrometer) [5] and HIPWAC (Heterodyne Instrument for Planetary Winds And Composition).

1. Introduction

In recent years, more emphasis was given to the investigation of the Venusian atmosphere, due to various spacecraft missions such as ESA's VenusExpress (VEx). Ground-based observations of the climatology on Venus can provide corresponding and supporting measurements and are crucial to understand the dynamical behavior especially in the upper atmosphere above the cloud top.

Investigations of the dark side of the planet showed an inversion of the temperature at around 59 km altitude [6]. This temperature inversion provokes absorption features of CO₂ even in high altitude regions. Heterodyne spectroscopy in the infrared range of the electromagnetic spectrum offers the advantage to resolve single molecular ro-vibrational transitions. This way, a close investigation of the line profile is possible in order to determine dynamics and temperatures of the atmospheric layer. The diffraction limited field-of-view at 10 μ m yields a good spatial resolution and is by orders of magnitudes smaller than the apparent diameter of Venus.

Infrared heterodyne spectroscopy probes the Venusian atmosphere between 65 km and 100 km by measuring

those pressure-broadened CO₂ lines. A first heterodyne observation of the CO₂ R(8) transition feature on the Venus night side was performed by Deming *et al.* in 1980 [2].

This very special transition region, where the dominating dynamical mechanism changes from the retrograde zonal superrotation (RSZ) into a solar induced sub-solar to anti-solar flow, is thought of to be most interesting to acquire better knowledge of the properties of Venus atmosphere. In addition, a lack of high spatially resolved, direct wind measurements in this altitude region enforces the necessity of continuous observations in the infrared.

Figure 1: Comparison of the CO₂ P(12) (left graph) and P(16) (right graph) line on Venus night side. The P(12) line was measured on the Equator at a local time of 22h. The (P16) was measured at 67N and a local time of around 23h. The P(16) line shows a much sharper absorption peak, whereas the the P(12) line seems to be saturated.

2. Observations

Observations of the P(12) and P(16) CO₂ absorption lines on Venus night side were carried out during two observing runs in March (RI) and April (RII) 2009 and

one in March 2012 (RIII) at NSO's McMath-Pierce Solar Telescope on Kitt Peak, AZ using the spectrometer THIS. Most recently, measurements with HIPWAC have been performed at NASA's Infrared Telescope Facility on Mauna Kea, HI (RIV). During the runs (RI), (RII) and (RIV) Venus was close to inferior conjunction ($\approx 0\%$ illumination) whereas it just past greatest eastern elongation during (RIII) ($\approx 50\%$ illumination). Various spectra were taken over the whole planetary disc in order to provide a good longitudinal and latitudinal coverage.

3. Results

Variations of the CO₂ absorption line shape has been observed (see Fig.1). An overview over the measured spectra will be presented in terms of latitude and Venusian local time.

The contributions to the overall spectrum from atmospheric levels of different pressure correspond to the temperatures in these layers. Therefore a careful analysis of the lineshape by using a radiative transfer model [3] yields information on the temperature profile of the atmosphere. First results of the variation of the vertical temperature profiles will be shown.

4. Outlook

The main perspective will be to finally analyze the line shapes in a way direct wind measurements in dependence of the altitude can be provided. Besides a reference analysis of calculated absorption lines to measured spectra will be performed, taking various vertical temperature profiles such as VeRa [6], VIRTIS [1] and PVO [4] into account.

References

- [1] Bertaux, J., Vandaele, A., Koralev, O., Villard, E., Fedorova, A., Fussen, D., Quemerais, E., Belyaev, D., Mahieux, A., Montmessin, F., Muller, C., Neefs, E., Nevejans, D., Wilquet, V., Dubois, J.P., Hauchecorne, A., Stepanov, A., Vinogradov, I., Rodin, A.: A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H₂O and HDO. *Nature* Vol.450, pp.646 (2007)
- [2] Deming, D., Espenak, F., Jennings, D., Kostiuk, T., Mumma, M.: Evidence for High-Altitude Haze Thickening on the Dark Side of Venus from 10-Micron Heterodyne Spectroscopy of CO₂. *ICARUS*, Vol.49, pp.35-48 (1982)
- [3] Hewagama, T., Goldstein, J., Livengood, T.A., Buhl, D., Espenak, F., Fast, K., Kostiuk, T., Schmülling, F.: Beam integrated high-resolution infrared spectra: Accurate modeling of thermal emission from extended clear atmospheres. *J. of Quantitative Spectr. & Rad. Transfer*, Vol.109, pp.1081 (2008)
- [4] Seiff, A., Kirk, D.B., Young, R.E., Blanchard, R.C., Findlay, J.T., Kelly, G.M., Sommer, S.C.: Measurements of Thermal Structure and Thermal Contrasts in the Atmosphere of Venus and Related Dynamical Observations: Results From the Four Pioneer Venus Probes. *J. Geophys. Res.*, Vol.85, pp.7903 (1980)
- [5] Sonnabend, G., Sornig, M., Krötz, P., Stupar, D., Schieder, R.: Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer. *J. of Quantitative Spectr. & Rad. Transfer*, Vol.109, pp.1016 (2008)
- [6] Tellmann, S., Pätzold, M., Häusler, B., Bird, M.K., Tyler, G.L.: Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express. *J. Geophys. Res.*, Vol.114, pp.19 (2009)