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Abstract
One of the primary science objectives of the JUpiter
ICy moon Explorer (JUICE) mission is to charac-
terize the origin and evolution of the Galilean satel-
lites. Here we discuss the observational tests that
could be performed via a Ion and Neutral Mass Spec-
trometer (INMS) aboard the JUICE mission and that
would shed light on the formation circumstances of the
Galilean satellite system.

1. Introduction
The history of the Jovian system can be divided into
three main phases: the formation of Jupiter, the for-
mation of its satellite system and its secular evolu-
tion to its present day state. Three different sets of
formation conditions can be considered regarding the
Galilean satellite system: 1) unaltered building blocks
from the protosolar nebula [1, 2], 2) altered materials
where a significant fraction of the volatile components
have outgassed before the formation process [3], and
3) building blocks that were vaporized in the subneb-
ula of Jupiter before coalescing in the formation pro-
cess, i.e. the Jupiter mini-solar system formation sce-
nario [4]. Cassini has shown that the Saturn system
seems to fall largely into category 2 [5, 6] but the size
of Jupiter and its relative distance from the Sun may
favor process 3 for the Galilean satellites. Here we
discuss the observational tests that could shed light on
the formation circumstances of the Galilean satellite
system.

2 Key measurements
Figure 1 displays the different key observations that
could constrain the origin of the Galilean satellite sys-
tem. These measurements are divided into two cat-
egories: determinations of the noble gas abundances

and measurements of the isotopic ratios.

2.1 Noble gas abundances
INMS measurement of the ratios of the noble gases
in the satellite environments, particularly Ar, Kr and
Xe would allow comparison with bodies that likely
formed in the solar nebula, such as comets, and
thereby constrain whether the material from which
the icy satellites formed was primarily circumsolar or
circum-Jovian.

2.2 Isotopic ratios
The deuterium-to-hydrogen ratio in water, compared
to that of the well-determined primordial value and
that in terrestrial ocean water, gives an indication of
the extent to which water in planetesimals experienced
elevated temperatures for durations sufficient for re-
equilibration with the surrounding hydrogen-rich gas
[2]. Measurement of the ratios of noble gases to CH4

and the 12C/13C and D/H ratios provides constraints
on the origin of any methane that might be present ei-
ther primordially or as a product of hydrothermal reac-
tions in the interiors of Europa and Ganymede [7, 8].
The origin of methane as primordial or a later product
of internal processing would provide a supplementary
constraint on the temperature history of the disk.
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Figure 1: Observational tests derived from different formation scenarios.
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