

Measurement requirements for constraining the origin of the Galilean satellite system

O. Mousis (1), J. H. Waite (2) and J. I. Lunine (3)

(1) Institut UTINAM, CNRS / Université de Franche Comté, Besançon, France, (2) Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX 78228, USA, (3) CCSR, Cornell University, Ithaca, NY 14853, USA
(olivier.mousis@obs-besancon.fr / Fax: +33 381 666 944)

Abstract

One of the primary science objectives of the JUpiter ICY moon Explorer (JUICE) mission is to characterize the origin and evolution of the Galilean satellites. Here we discuss the observational tests that could be performed via a Ion and Neutral Mass Spectrometer (INMS) aboard the JUICE mission and that would shed light on the formation circumstances of the Galilean satellite system.

1. Introduction

The history of the Jovian system can be divided into three main phases: the formation of Jupiter, the formation of its satellite system and its secular evolution to its present day state. Three different sets of formation conditions can be considered regarding the Galilean satellite system: 1) unaltered building blocks from the protosolar nebula [1, 2], 2) altered materials where a significant fraction of the volatile components have outgassed before the formation process [3], and 3) building blocks that were vaporized in the subnebula of Jupiter before coalescing in the formation process, i.e. the Jupiter mini-solar system formation scenario [4]. Cassini has shown that the Saturn system seems to fall largely into category 2 [5, 6] but the size of Jupiter and its relative distance from the Sun may favor process 3 for the Galilean satellites. Here we discuss the observational tests that could shed light on the formation circumstances of the Galilean satellite system.

2 Key measurements

Figure 1 displays the different key observations that could constrain the origin of the Galilean satellite system. These measurements are divided into two categories: determinations of the noble gas abundances

and measurements of the isotopic ratios.

2.1 Noble gas abundances

INMS measurement of the ratios of the noble gases in the satellite environments, particularly Ar, Kr and Xe would allow comparison with bodies that likely formed in the solar nebula, such as comets, and thereby constrain whether the material from which the icy satellites formed was primarily circumsolar or circum-Jovian.

2.2 Isotopic ratios

The deuterium-to-hydrogen ratio in water, compared to that of the well-determined primordial value and that in terrestrial ocean water, gives an indication of the extent to which water in planetesimals experienced elevated temperatures for durations sufficient for re-equilibration with the surrounding hydrogen-rich gas [2]. Measurement of the ratios of noble gases to CH₄ and the ¹²C/¹³C and D/H ratios provides constraints on the origin of any methane that might be present either primordially or as a product of hydrothermal reactions in the interiors of Europa and Ganymede [7, 8]. The origin of methane as primordial or a later product of internal processing would provide a supplementary constraint on the temperature history of the disk.

Acknowledgements

O.M. acknowledges support from CNES.

References

- [1] Mousis, O., Gautier, D.: Constraints on the presence of volatiles in Ganymede and Callisto from an evolutionary turbulent model of the Jovian subnebula. *Planetary and Space Science* 52, 361, 2004.

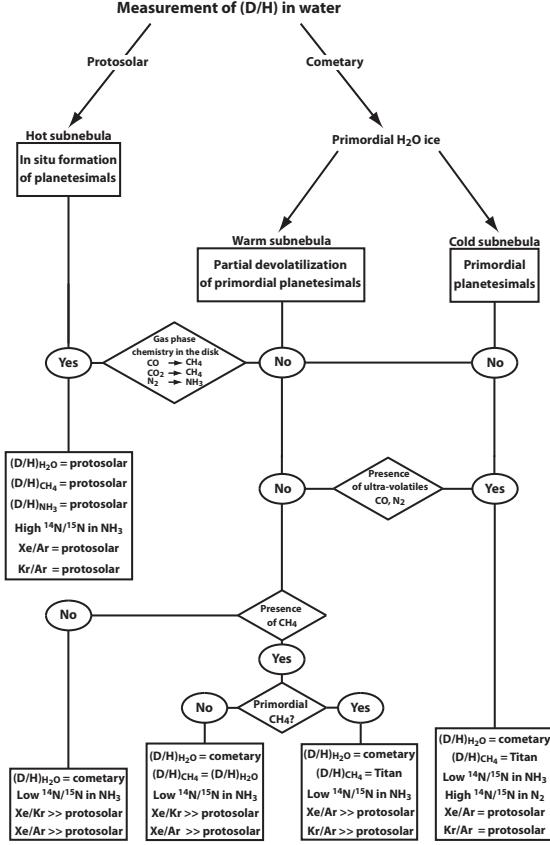


Figure 1: Observational tests derived from different formation scenarios.

- [2] Horner, J., Mousis, O., Alibert, Y., Lunine, J. I., Blanc, M.: Constraints from deuterium on the formation of icy bodies in the Jovian system and beyond. *Planetary and Space Science* 56, 1585, 2008.
- [3] Mousis, O., and 10 colleagues.: Clathration of Volatiles in the Solar Nebula and Implications for the Origin of Titan's Atmosphere. *The Astrophysical Journal* 691, 1780, 2009.
- [4] Prinn, R. G., Fegley, B., Jr.: Kinetic inhibition of CO and N₂ reduction in circumplanetary nebulae – Implications for satellite composition. *The Astrophysical Journal* 249, 308-317, 1981.
- [5] Waite, J. H., Jr., and 15 colleagues.: Liquid water on Enceladus from observations of ammonia and ⁴⁰Ar in the plume. *Nature* 460, 487-490, 2009.
- [6] Mousis, O., Lunine, J. I., Waite, J. H., Magee, B., Lewis, W. S., Mandt, K. E., Marquer, D., Cordier, D.: Formation Conditions of Enceladus and Origin of Its Methane Reservoir. *The Astrophysical Journal* 701, L39-L42, 2009.
- [7] Jehin, E., Manfroid, J., Hutsemékers, D., Arpigny, C., Zucconi, J.-M.: Isotopic Ratios in Comets: Status and Perspectives. *Earth Moon and Planets* 105, 167-180, 2009.
- [8] Mousis, O., Lunine, J. I., Pasek, M., Cordier, D., Hunter Waite, J., Mandt, K. E., Lewis, W. S., Nguyen, M.-J.: A primordial origin for the atmospheric methane of Saturn's moon Titan. *Icarus* 204, 749-751, 2009.