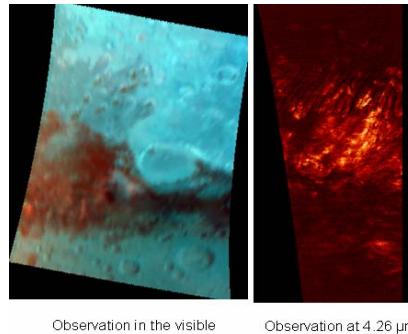


Mars CO₂ ice clouds: results of 5 Martian years of monitoring by OMEGA/Mars Express

B. Gondet (1), J-P. Bibring (1) and M. Vincendon (1)


(1) Institut d'Astrophysique Spatiale Bâtiment 121 Université Paris-Sud 91405 Orsay Cedex France (brigitte.gondet@ias.u-psud.fr Fax: +33169858675)

1. Introduction

An important achievement of the ESA/Mars Express mission is the detection of mesospheric CO₂ ice clouds, by indirect (PFS [1] and SPICAM [2]) and direct (OMEGA [3,4] and HRSC [5]) observations, as suggested by Clancy et al. [6]. These clouds have been recently detected by CRISM [7] and MCS [8] on board MRO.

2. Observations

Back in 2007, OMEGA provided the first non ambiguous discovery and characterization of high altitude CO₂ clouds in Mars atmosphere, at specific locations and times, through their diagnostic reflectance signature at 4.26 μm and/or at .4 μm (fig 1) They were monitored, in their space/time evolution, during 5 consecutive Martian years. They offer a unique possibility to understand the processes involved in cloud formation, both on Mars and Earth. We will present an overview of the properties of these clouds in terms of location, altitude, seasonal variation, and opacity. Although no definite explanation for their formation can be proposed, we will suggest potential processes and conditions to account for.

Observation in the visible Observation at 4.26 μm

Figure 1: observations of CO₂ clouds with Omega using the visible channel (on the left) and the 4.26 μm band (on the right)

References

- [1] Formisano, V, Maturilli, A, Giuranna, M, D'Aversa, E & Lopez-Valverde, MA 2006, 'Observations of non-LTE emission at 4–5 microns with the planetary Fourier spectrometer aboard the Mars Express mission', *Icarus*, vol 182, p. 51–67.
- [2] Montmessin, F, Bertaux, J-L, Quémérais, E, Korablev, O, Rannou, P, Forget, F, Perrier, S, Fussen, D, Lebonnois, S, Rébérac, A & Dimarellis, E 2006, 'Subvisible CO₂ ice clouds detected in the mesosphere of Mars', *Icarus* 183, pp. 403-410.
- [3] Montmessin, F, Gondet, B, Bibring, J-P, Langevin, Y, Drossart, P, Forget, F & Fouchet, T 2007, 'Hyperspectral imaging of convective CO₂ ice clouds in the equatorial mesosphere of Mars', *J. Geophys. Res.* 112, p. E11S90.
- [4] Määttänen, A, Montmessin, F, Gondet, B, Scholten, F, Hoffmann, H, González-Galindo, F, Spiga, A, Forget, F, Hauber, E, Neukum, G, Bibring, J-P & Bertaux, J-L 2010, 'Mapping the mesospheric CO₂ clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models', *Icarus* 209, pp. 452-469.
- [5] Scholten, F, HH, MA, MF, GB, HE 2010, 'Concatenation of HRSC colour and OMEGA data for the determination

and 3D-parameterization of high-altitude CO₂ clouds in the Martian atmosphere', *Planet. Space Sci.* 58, pp. 1207-1214

[6] Clancy, R. T., and B. J. Sandor (1998), CO₂ ice clouds in the upper atmosphere of Mars, *Geophys. Res. Lett.*, 25(4), 489-492, doi:10.1029/98GL00114

[7] Vincendon, Mathieu; Pilorget, Cedric; Gondet, Brigitte; Murchie, Scott; Bibring, Jean-Pierre 2011, New near-IR observations of mesospheric CO₂ and H₂O clouds on Mars, 2011JGRE..11600J02V

[8] Sefton-Nash, E. et al. 2012, detection and mapping of ice clouds in Mars mesosphere, 43rd LPSC (1817)