

On the modeling of IMF influence on pressure balance at planetary obstacles in the flow of the solar wind

M.I. Verigin (1), M. Tátrallyay (2), G. Erdős (2), and G.A. Kotova (2)

(1) Space Research Institute RAS, Profsoyuznaya, 84/32, Moscow, 117997, Russia, (2) Institute for Particle and Nuclear Physics, Wigner RCP HAS, 1525 Budapest P.O. Box 49, Hungary (verigin@iki.rssi.ru)

Abstract

It is usually accepted and is generally valid that the solar wind pressure Π to the nose of planetary obstacles can be approximated as $\Pi \approx k\rho V^2$ with k being the function of solar wind specific heat ratio γ and sonic Mach number M_s ($k \approx 0.88$ for $\gamma = 5/3$ and $M_s \rightarrow \infty$), and ρV^2 being the solar wind ram pressure. Recently Dušík et al. [1] revealed in THEMIS data the dependence of the geomagnetopause nose position on the IMF cone angle ϑ . This dependence was interpreted by Verigin et al. [2] with the use of empirical relation between IMF and magnetosheath magnetic fields by Crooker et al. [3]. It was suggested to be a result of magnetic field additional pressure at the magnetopause nose:

$$\Pi = k\rho V^2 \left(1 + \frac{4\sin^2 \vartheta}{kM_a^2} + \frac{4\sin^2 \vartheta}{kM_a^2} \sqrt{1 + \frac{kM_a^2}{2\sin^2 \vartheta}} \right),$$

where M_a is the Alfvénic Mach number. This additional pressure is expected to be relatively more important for solar wind flow around giant planets, due to slower decrease of IMF ($\sim r^{-1}$) compared with decrease of solar wind density ($\sim r^{-2}$) with heliocentric distance r increase. Different approaches to the description of the additional pressure to the planetary obstacles, based on analytical consideration and 3-D MHD modeling are discussed.

Acknowledgements

The talk is partially supported by P22 program of RAS.

References

- [1] Dušík, Š., G. Grankov, J. Šafránková, Z. Němeček, and K. Jelínek (2010), IMF cone angle control of the magnetopause location: Statistical study, *Geophys. Res. Lett.*, 37, L19103, doi:10.1029/2010GL044965.
- [2] M.I. Verigin, M. Tátrallyay, G. Erdős, G.A. Kotova, V.V. Bezrukikh, Modeling of the IMF influence on position of the magnetopause, in: 7-th conference Solar System Plasma Physics, Abstracts, Feb. 6-10, 2012, IKI RAS, Moscow, p. 88 (<http://plasma2012.cosmos.ru/files/conf-plasma7-iki-feb2012.pdf>).
- [3] Crooker, N. U., G. L. Siscoe, P. R. Mullen, C. T. Russell, and E. J. Smith (1982), Magnetic Field Compression at the Dayside Magnetopause, *J. Geophys. Res.*, 87(A12), 10,407–10,412, doi:10.1029/JA087iA12p10407