

Results from Astrobiology Field Research Campaigns in Earth Extreme Environments

B.H. Foing (1, 2), L. Rodrigues (2), C. Stoker (3), P. Ehrenfreund (4, 5), S.O.L. Direito (2), W.F.M. Röling (2), G.R. Davies (2), I. Rammos (2), T. Zhao (2), A. Mangeot (6), W. Pouters (2, 6), B. Rai (2, 6), EuroGeoMars2009 Team, DOMMEX-ILEWG EuroMoonMars 2010-2012 Teams

(1) ESA/ ESTEC, Postbus 299, 2200 AG Noordwik, NL; (2) Vrije Universiteit, Amsterdam, Faculty of Earth & Life Sciences, De Boelelaan 1085, 1081 HV Amsterdam, NL; (3) NASA Ames Research Centre; US; (4) Leiden Institute of Chemistry, NL; (5) Space Policy Institute, GWU, Washington D.C., USA; (6) ILEWG

References

Abstract

We conducted a series of field research campaigns in the extreme environment of the Utah desert relevant to habitability and astrobiology research in Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL). Keywords: astrobiology, habitability, life detection, field analog research, Earth-Mars, organics

Methods & Results

We deployed at Mars Desert Research station, near Hanksville Utah, a suite of instruments and techniques [1, 2, 9-11] including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and Polymerase Chain Reaction PCR. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and therefore the habitability and the signature of organics and biota.

Among the important findings of these field research campaigns are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable polycyclic aromatic hydrocarbons and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles, mainly Bacteria but also Archaea and Eukarya was observed [3,4,9]. A dominant factor in measurable bacterial abundance seems to be soil porosity and lower clay-sized particle content [6-8]. We discuss the protocol for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign published results [0-9] to new measurements from 2010-2012 campaigns relevant to the detection of organics and signs of life.

[0] Foing, Stoker & Ehrenfreund (Editors, 2011) "Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International Journal of Astrobiology , IJA 2011, 10, vol. 3. 137-305

[1] Foing B. et al. (2011) Field astrobiology research at Moon-Mars analogue site: Instruments and methods, IJA 2011, 10 (3), 141;

[2] Clarke, J., Stoker, C. Concretions in exhumed & inverted channels near Hanksville Utah: implications for Mars, (IJA 2011, 10 (3), 162

[3] Thiel et al., (2011) PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. (IJA 2011, 10 (3), 177

[4] Direito et al. (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). (IJA 2011, 10 (3), 191

[5] Orzechowska, G. et al (20110 analysis of Mars Analog soils using solid Phase Microextraction, Organics solvent extraction and GCMS, (IJA 2011, 10 (3), 209

[6] Kotler et al. (2011). Analysis of mineral matrices of planetary soils analogs from the Utah Desert. (IJA 2011, 10 (3), 221

[7] Martins et al. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. (IJA 2011, 10 (3), 231

[8] Ehrenfreund et al. (2011) Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. (IJA 2011, 10 (3), 239

[9] Stoker C. et al (2011) Mineralogical, Chemical, Organic & Microbial Properties of Subsurface Soil Cores from Mars Desert Research Station, a Phyllosilicate and Sulfate Rich Mars Analog Site, IJA 2011, 10 (3), 269

[10] Rodrigues L. et al (2012, in preparation) Preventing biocontamination during sterile sampling

[11] Rodrigues L. et al (2012, in preparation) Microbial diversity in MDRS rocks and soils