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Abstract 2. Photothermochemical modelling

Our photo-thermo-chemical model is pertinent to the
We have developed a photo-thermo-chemical model study of hot terrestrial atmospheres. It is adapted from
adapted to the study of the hot terrestrial atmospheres.a numerical code that has been used lately to simu-
Such a model is essential to interpret future observa-|ate the photochemistry of a wide range of planetary
tions and to predict the composition of hot extrasolar atmospheres: primitive Earth, Titan [5], Neptune [3],
terrestrial planets. It is also important to understand hot Jupiters [8] We have modelled some isothermal
the formation and the evolution of some of their key terrestrial-like atmosphereS’ composed |n|t|a||y Qt N
atmospheric species. We investigate here the effect OfOQ, CO, and H0, at different temperatures. These at-
an increase of the temperature on the predicted abunmospheres were allowed to evolve, according to UV ir-
dances of some of these key species, such as 0zone Oradiation, photochemical/thermochemical kinetics [6]
and carbon dioxide CO and vertical diffusion, until steady state is achieved.
The results obtained are shown in Fig. 1. High atmo-
spheric temperatures seem to inhibit very efficiently
. the production of an ozonesQayer when considering
1. Introduction thermochemical kinetics and when fully reversing re-
action rates. In the Earth’s atmosphere, the destruction
The search for extrasolar terrestrial planets raises cur-of ozone Q occurs through a large number of reac-
rently a considerable scientific interest. The firstone to tions, among which are some catalytic cycles involv-
be discovered are on close-in orbits around their par-ing mainly hydrogenous compounds (H, OH, §)O
ent stars. Known terrestrial exoplanets can thereforeand competiting efficiently with the regular Chapman
be as hot as a few thousand K, such as Corot-7b [7] cycle [4]. Globally, the higher the atmospheric temper-
and Kepler-10b [1]. The detectability of any spectral atures, the larger the increase in some of these active
features in exoplanetary atmospheres depends mainlyjcompounds abundances over equilibrium predictions.
on two main parameters: their chemical composition
and their temperature profile. However, the competi- 3 Experimental measurement
tion between photochemical kinetics and thermochem-
istry susceptible to exist in hot terrestrial atmospheres An important source of uncertainty in photo-thermo-
prevents us from generalizing the processes occurringchemical models is the temperature-dependency of
in Earth’s atmosphere and initiating potential depar- their parameters: IR absorption coefficiefts(T),
tures from equilibrium. It requires therefore detailed UV absorption cross-sectiorgT") and chemical ki-
modelling in order to estimate the risk of false-positive netics reaction rates(7'). Usually, available data
and/or false-negative occurrences when seeking spechave been measured at ambient temperature, which
troscopic evidence of habitable conditions and life. is problematic for modelling hot atmospheres. In or-
One-dimensional models coupling photochemical and der to improve this situation, we have begun a cam-
thermochemical kinetics and vertical diffusion already paign of experimental measurement of VUV absorp-
exist to study the effects of disequilibrium chemistry tion cross sections at high temperature, for some im-
on the atmospheric composition of "hot-Jupiter" exo- portant species of transiting exoplanets atmospheres
planets [10, 11, 12, 13, 8]. We apply here such method such as water D and carbone dioxyde GOThis ex-
to the modelling of hot terrestrial exoplanets. perimental work has been done using the BESSY syn-
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