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Abstract

The extensive spatial and seasonal coverage provided
by Mars Climate Sounder allows us to document the
seasonal variation of temperature and cloud structure
over the course of the two-plus Mars years. Nightside
and dayside observations (at 3am and 3pm,
respectively)  enable the identification  of
nonmigrating thermal tides and provide much more
detail on the migrating diurnal tide, previously
characterized by [1]. Mars GCM simulations are also
presented to better interpret the tide observations.
Prior work [2,6] has suggested a coupling between
the tides and water ice clouds, whereby the tides
shape the temperature response and cloud radiative
effects amplify the tide forcing. The MCS
observations and MGCM modeling provide further
support for this claim.
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Figure 1. Composite seasonal cycle of the equatorial

migrating diurnal tide field represented by zonally

averaged Tgi.

1. Introduction

The tides can be examined in MCS temperature
retrievals by an analysis of gridded fields of Ty =
(T3pm-T3am)/2. Nonmigrating diurnal tides can be
identified by the presence of zonal structure in the

Tgiee field. Given the relative absence of stationary
waves in the tropical temperature field, nonmigrating
tides can also be identified using Ts,m, data only.

2. Results

The equatorial migrating tide is shown in Figure 1.
The result is consistent with a vertically propagating
tide, with the phase fixed by the 3am/3pm
observation time. The maximum tide amplitudes in
the equinoctial seasons are in good agreement with
MGCM simulations. Figure 2 shows the longitudinal
structure present in the equatorial Tg,, field. The
field is dominated by features with zonal waves 2-4
and relatively long vertical wavelengths. These are
found to reflects a mix of eastward propagating
diurnal period Kelvin waves [1] and westward
propagating tides with shorter vertical wavelengths.
The latitude/height structures of these waves are in
general agreement with MGCM simulations. The
seasonal variation in tropical temperature structure at
1 Pa (~60 km) is shown in Figure 3. Nonmigrating
tide amplitudes are typically stronger during the NH
summer season than in other seasons. The full T,
field corresponding to the bottom 40 km of Figure 3
is shown in Figure 4.
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Figure 2. Anomaly field constructed from equatorial
Tsam during the NH summer solstice season.
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Figure 3. Longitude-time plot of the Ts,, equatorial
(5°S-5°N) temperature anomaly field at 1 Pa.

As discussed in [6], there is a close relationship
between ice clouds and temperature. MGCM
simulations [2,6] indicate that the prominent
temperature inversion in the Tharsis region is
consequence of an enhanced tide response forced by
cloud radiative cooling. This is particularly notable in
the cold near-surface temperature anomalies over
Arabia and Tharsis (Figures 2 and 4). The seasonal
variation of the zonal wave 2 pattern in low level
temperature that is summarized in Figure 5 is closely
correlated with the evolution of ice cloud opacity that
peaks shortly after NH summer solstice. The cold air
temperature anomalies are also strongly correlated
with anomalously warm MCS surface temperatures
that were interpreted [5,6] as reflecting the presence
of enhanced IR radiation from thick nighttime water
ice clouds. We will show how these observations can
serve to constrain MGCM simulations of radiatively
active water ice clouds.
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Figure 4. Longitude/pressure section of equatorial
temperature for L= 110-120°. Pressure in hPa.
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Figure 5. Evolution of equatorial Ta,, at 290 Pa.



