

Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

Ioannis A. Daglis (1), Sebastien Bourdarie (2), Yuri Khotyaintsev (3), Ondrej Santolik (4), Richard Horne (5), Ian Mann (6), Drew Turner (7), Anastasios Anastasiadis (1), Vassilis Angelopoulos (7), Georgios Balasis (1), Eleni Chatzichristou (1), Chris Cully (3), Marina Georgiou (1), Sarah Glauert (5), Benjamin Grison (4), Ivana Kolmasova (4), Didier Lazaro (2), Eva Macusova (4), Vincent Maget (2), Constantine Papadimitriou (1), Georgios Ropokis (1), Ingmar Sandberg (1), Maria Usanova (6)

(1) Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Greece (daglis@noa.gr Tel: +30-210-8109185)

(2) OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES, France

(3) INSTITUTET FOR RYMFYSIK, Sweden

(4) Institute for Atmospheric Physics, Czech Republic,

(5) British Antarctic Survey, United Kingdom,

(6) UNIVERSITY OF ALBERTA, Canada

(7) UNIVERSITY OF CALIFORNIA LOS ANGELES, United States

Abstract

We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme.

The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed.

Furthermore, we will incorporate multi-spacecraft particle measurements into data assimilation tools, aiming at a new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven to be a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system.

References

[1] The MAARBLE Project WebSite:

<http://www.maarble.eu/>