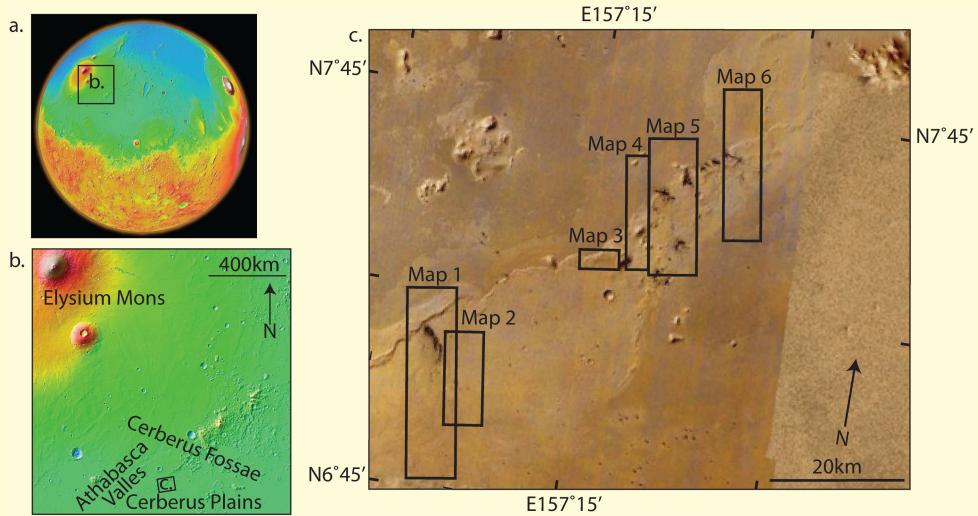
Probable recent water/lava source fissures in the Cerberus Plains, Mars: stratigraphic and crater count age constraints

Birkbeck College, London, UK

1. The Problem


The Cerberus Plains are one of the **youngest surfaces on Mars** [2,4], and were probably formed by outflows of water and/or lava [1,6] with lava flows outlasting hydrous flows [5]. The source of this fluid, however, is not well understood: there are problems with **Cerberus Fossae** as the source [3] and **no other specific** sources have been identified.

Plains volcanism often obscures its fissures so visible sources should be searched for in features elevated above the plain. New HiRISE images reveal just such a feature: a wrinkle ridge south of Cerberus Fossae incised by a series of fissures. Each has associated channels and deposits indicating flow onto the **plains** surrounding the ridge, showing that they are vents.

This study produced **small-scale geomorphological maps** to establish the stratigraphic relationships between the fissure-sourced outflows and the regional plains to determine if they were the source of the plains material. Crater counts were used to supplement these observations and suggest tentative absolute ages.

2. The Study Area

Figure 1: Setting. a) Global image, centred on 4°S, 180°W, b) Study area within the wider region (shaded relief), c) Small-scale maps within the study area (visible imagery) (Source: Google Earth.)

3. Methods

Geomorphological Mapping

Small-scale maps were created based on HiRISE images from Mars Reconnaisance Orbiter (Table 1) and a regional map was created based on a mosaic of CTX images.

 Table 1: Base images for small-scale maps

Мар	HiRISE image product	Мар	HiRISE image product
1	ESP_016361_1870	4	ESP_016427_1875
2	ESP_020251_1870	5	ESP_016150_1875
3	TRA 000867 1875	6	PSP 007342 1875

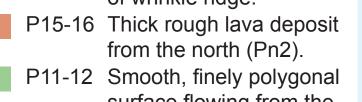
Geomorphological mapping was performed with the aim of constraining the stratigraphic relationships between the channels, deposits and fissures. A stratigraphic tree was produced for each map indicating superposed and incised contacts between units.

Crater Counting

All craters >16m diameter were mapped. These were counted for units of specific interest and the results were binned using the scheme of Hartmann & Neukum [4]. Crater sizefrequency curves were created which were compared with established isochrons [4] to give tentative absolute dates.

Rebecca Thomas

rebecca@thomas.net

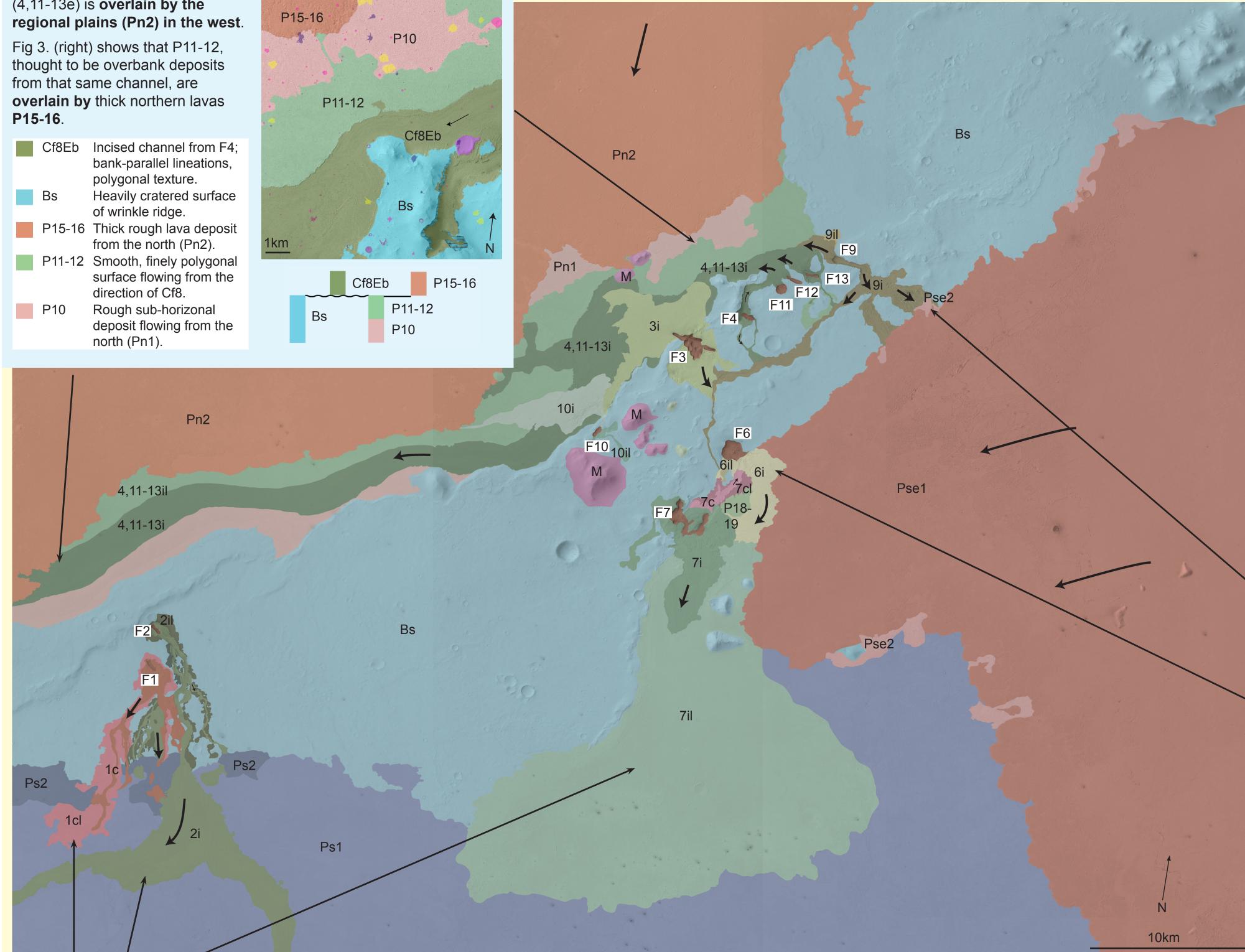

It was found that these fissures were the source of the Cerberus Plains to the south and that they were recent, as young as 1-10Ma.

4. Stratigraphic Evidence

North: Regional plains overlie outflows

The regional map (Fig. 2) shows that the channel from fissure 4 (4,11-13e) is **overlain by the**

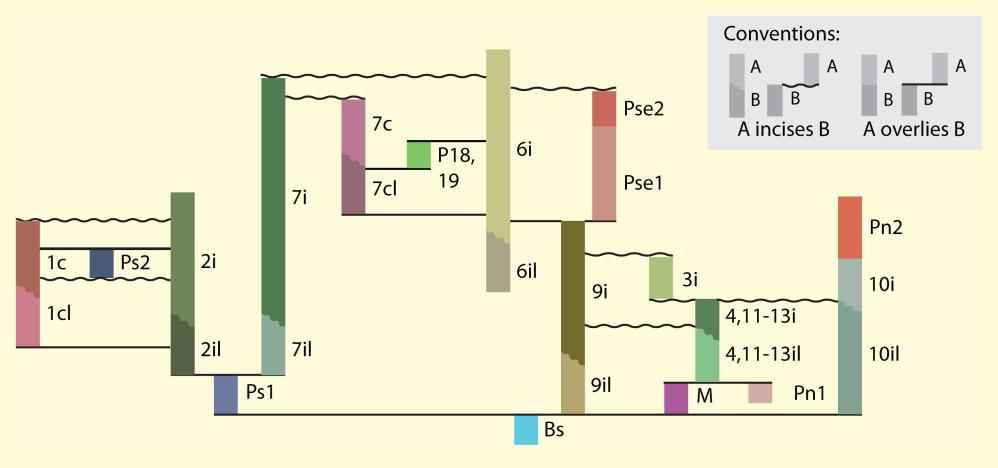
polygonal texture.



direction of Cf8. Rough sub-horizonal

Figure 2: Simplified regional map of 156.8°E, 6.73°N - 158°E, 8.01°N.

Channels and deposits are named by source and plains material by location (see right). Unit names differ from those used in the small-scale maps in order to emphasise flow sources.

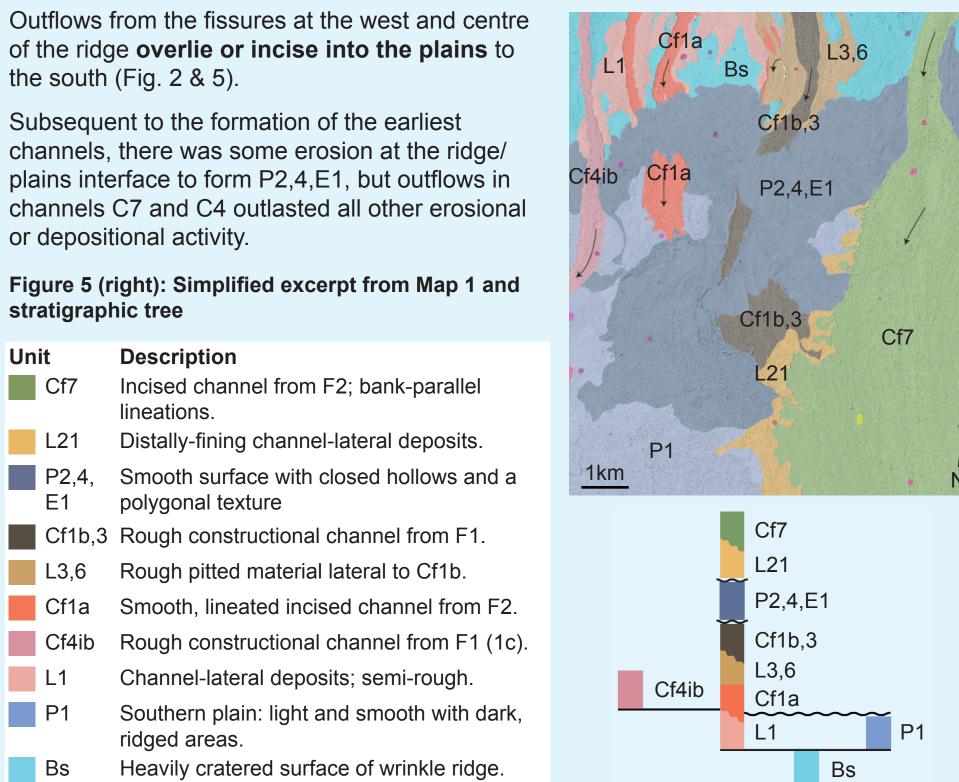

Naming conventions for Figure 2					
Fiss	ure-sourced units	Regional plains units			
Nc	Constructive channels from fissure N	PlocN			
Ncl	Deposits lateral to constructive channel Nc	<i>loc</i> = location : s = south, se = southeast, n = north			
Ni	Incised channels from fissure N	<i>N</i> = stratigraphic position relative to other plains			
Nil	Deposits lateral to incised channel Ne	deposits at that location, earliest to latest			
Other units					

Name	Description	Name	Description
Bs	Wrinkle ridge basement	P18-19	Plains material, unknown source
Μ	Steep-sided mounds	FN	Numbered fissure N

 \rightarrow Direction of palaeoflow

Stratigraphic Tree

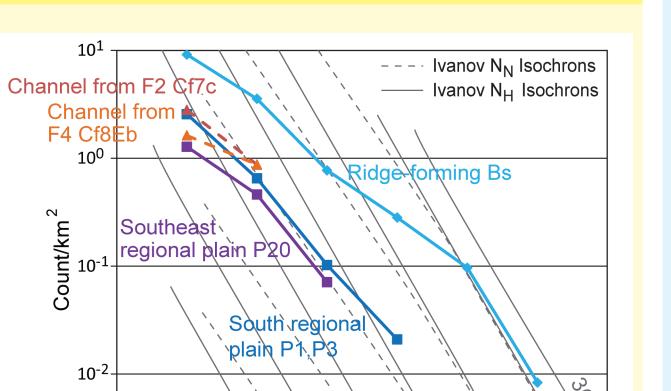
Diagonal contacts indicate relationship between the fill deposits of a channel and its channel-lateral deposits. The same conventions were used in all other stratigraphic trees.


South: Outflows overlie regional plains

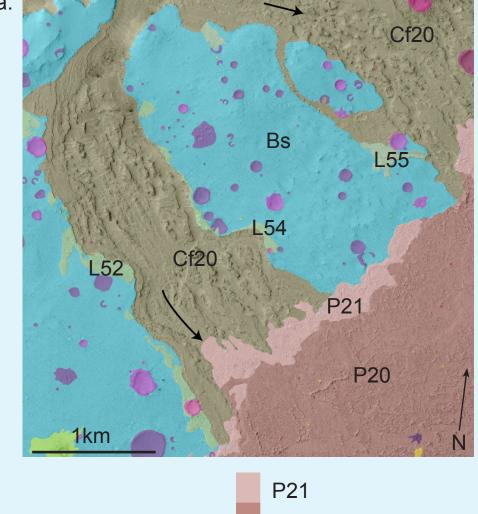
Outflows from the fissures at the west and centre of the ridge overlie or incise into the plains to the south (Fig. 2 & 5).

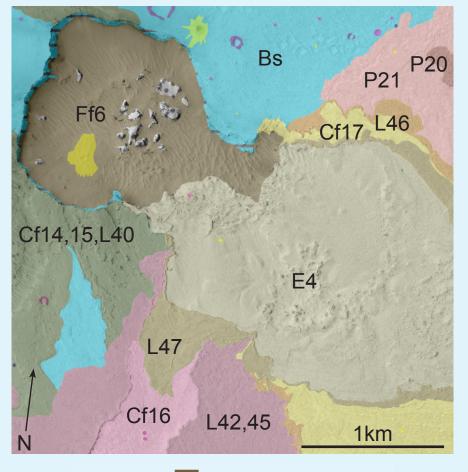
Subsequent to the formation of the earliest channels, there was some erosion at the ridge/ plains interface to form P2,4,E1, but outflows in channels C7 and C4 outlasted all other erosional or depositional activity.

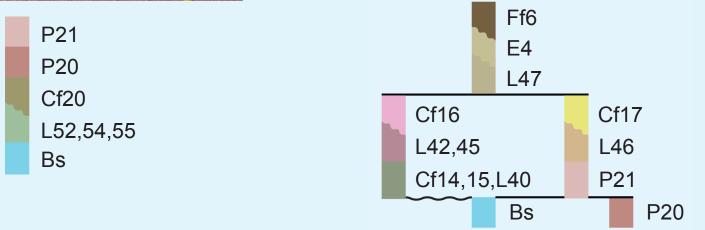
Figure 5 (right): Simplified excerpt from Map 1 and stratigraphic tree


Unit	Description
Cf7	Incised channel from F2; bank-parallel lineations.

5. Evidence from Crater Counts


• Surface of the ridge: its distinct curve shows it is older than fissure-sourced and regional plains units. Fissure-sourced and regional plains units show similar curves suggesting similar formation dates.


• The southeast regional flow, P20, which has the largest sample size of the non-ridge units, has a curve suggesting an age of 1-10Ma.



Southeast: Youngest outflows locally overlie regional plains

Decised plain D20 and its terminal			
Regional plain P20 and its terminal		P21	Smooth deposit marginal to P20 (Pse2).
deposits P21 overlie fissure- sourced channel Cf20 (Figure 4a).		P20	Southeast plain: rough ridged areas and smooth, polygonal-textured areas (Pse1).
Further to the west, deposits lateral		Cf20	Incised channel networks from F9 (9i).
to channel Cf17 overlie deposits P21		L52,54,55	Semi-rough deposits lateral to Cf20.
which in turn overlie the regional		Ff6	Fine-grained unconsolidated fissure fill.
plain P20 (Figure 4b). These very localised fissure-sourced deposits therefore postdate the deposition of the regional plains .		E4	Area showing incision and deposition.
		L47	Deposits lateral to E4.
		Cf16	Constructional channel from F7 (7c).
		L42,45	Deposits lateral to Cf16.
		Cf17	Smooth channel surface with overlying rough, darker ridges.
		L46	Rough material lateral to Cf17.
		Cf14-15,L40	Earlier channels and deposits.
Figure 4: Simplified excerpts from a. Map 6, b. Map 5, with stratigraphic trees		Bs	Heavily cratered surface of wrinkle ridge.

References

ridged areas.

L21

P2,4,

L3,6

Cf1a

Cf4ib

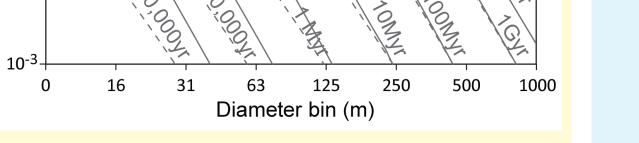
P1

Bs

E1

[1] Bargery, A.S. & Wilson, L.: Erosive flood events on the surface of Mars, Icarus, 212, pp.520-540, 2011.

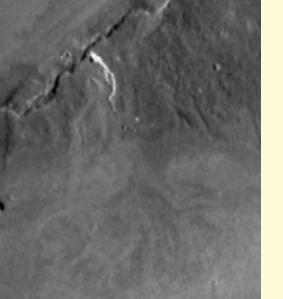
[2] Berman, D.C. & Hartman, W.K.: Recent fluvial, volcanic and tectonic activity on the Cerberus Plains of Mars, Icarus, 159, pp.1-17, 2002.


[3] Edgett, K. S. & Malin, M. C.: The layered upper crust of Mars: An update on MGS MOC observations after two years in the mapping orbit, Lunar Planet. Sci. XXXIV, abstract 1124, 2003.

[4] Hartmann, W.K. & Neukum, G.: Cratering Chronology and the Evolution of Mars. Space Sci. Rev. 96, pp.165-194, 2001.

[5] Jaeger, W. L., Keszthelyi, L. P. etc: Athabasca Valles, Mars: A lava draped channel system, Science, 317, pp.1709–1711, 2007.

[6] Jaeger, W. L., Keszthelyi, L. P. etc: Emplacement of the youngest flood lava on Mars: A short, turbulent story, Icarus, 205, pp. 230-243, 2010.


Figure 6: Crater size-frequency curves for relevant units superimposed on published absolute dating isochrons [4]

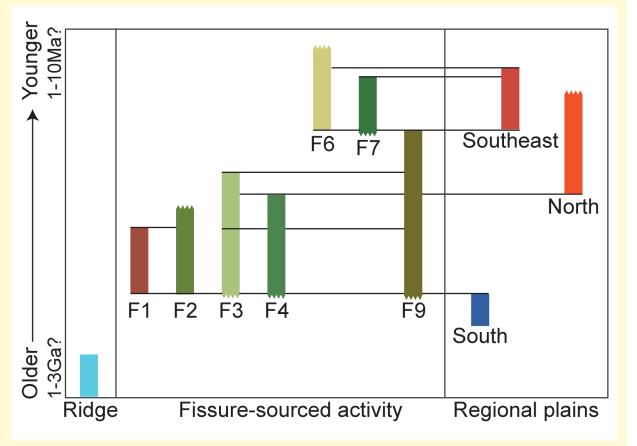
6. Conclusion: Recent outflows from these fissures formed part of the Cerberus Plains

Figure 7: THEMIS IR Day Source of the plains

mosaic (NASA/USGS) Sinuous features suggest earlier buried outflows from the ridge.

The southern plains were formed by episodic flow from the fissures. Sinuous features in Fig. 7 suggest that the visible channels are only the most recent in a longer history of outflow.

• The north and southeast plains are sourced from outside the study area.


Nature of the outflows and deposits

- Mostly water-rich outflows: they incise sinuous channels, deposit material gradually and form plains featuring probable periglacial landforms, e.g. polygonal textures and closed hollows.
- Localised probable lava flows forming rare levéed channels, e.g. from F1, with rough deposits and blunt, lobate terminations. These are too localised to be plains-forming.
- Non-fissure-sourced lava plains: low albedo rough deposits with upstanding lobate margins.

Dating

- Fissure-related outflows were contemporaneous with regional plains formation in the southeast (Fig 9.) which was very recent, possibly 1-10Ma.
- Outflows from these fissures were thus **part of a broader picture of activity** forming the Cerberus Plains at that time through water outflow from this wrinkle ridge and lava flows from elsewhere.

Figure 9: Age relationships of ridge, plains and fissure**sourced activity** based on stratigraphic and crater count constraints. 'Saw-tooth': unknown boundary ages, black lines: known age relationships.

