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Abstract

Despite numerous attempts to automate the process 
of  analysing  planetary  images,  none  have  been 
widely adopted. Instead,  some researchers  prefer to 
out-source  large  scale  processing  tasks  to  Citizen 
Science  projects  [1].  We  believe  that  the  lack  of 
uptake  in  fully  automated  methods  is  not  due  to 
performance  levels,  but   the  omission  of  an  error 
theory  capable  of  providing  measurements  within 
predictable  accuracies.  Here,  we  outline  our  work 
towards  a  flexible  pattern  recognition  system  for 
extracting  scientifically  useful  quantitative 
measurements  from  planetary  images,  providing 
maximum  likelihood  measurement  estimates 
accompanied by clear error predictions (in the form 
of  measurement  covariances)  and  a  goodness-of-fit 
indicator.  We  include  encouraging  results  from 
Monte-Carlo  data  and  synthetic  Martian  images 
derived from HiRISE [2] datasets. 

1. Introduction

Our  automated  planetary  image  analysis  method 
consists of: a supervised learning system using linear 
Poisson  histogram  models  of  exemplar  terrains;  a 
detailed  error  theory which computes  measurement 
covariances via the application of error propagation; 
and a model goodness-of-fit using a chi-squared per 
degree of freedom test for Poisson histogram data.

1.1 Measurements from histograms

Incoming images are encoded as texture histograms 
by  grouping  together  connected  BRIEF-like  [3] 
patches  and  recording  their  frequencies.   During 
training,  linear  models  of  exemplar  terrains  are 
generated using an Independent Component Analysis 
based upon Likelihood which is optimised using an 
Expectation  Maximisation  (EM) algorithm.  Surface 
area measurements (from which other measurements 
can be derived) are subsequently estimated by fitting 
the  trained  models,  via  EM,  to  terrain  histograms 
computed for new incoming images. Model weighing 

parameters  can  then  be  converted  to  surface  area 
measurements by scaling with BRIEF patch sizes.

1.2 Measurement covariances

The  stability  of  surface  area  measurements  is 
computed by considering how noise in training data 
and noise in incoming data affects estimated model 
parameters.  This  is  done  via  error  propagation  [4] 
which  approximates  measurement  perturbations  by 
computing  the  derivatives  of  model  weights  with 
respect to the sources of error. The sources of error 
are  assumed  to  be  independent  Poisson  sampling 
noise in training and testing histogram bins.

1.1 Goodness-of-fit

Problems with an analysis (e.g. unfamiliar terrains or 
outliers)  can  be  identified  using  a  chi-squared  per 
degree  of  freedom  function  [4].  The  residuals 
between  modelled  and  observed  histograms,  which 
are  Poisson,  can  be  made  to  better  approximate  a 
Gaussian (even for small quantities)  with a square-
root  transform,  then  a  standard  chi-squared  per 
degree of freedom test can be applied.

2. Monte-Carlo and Martian data

In  order  to  demonstrate  proof  of  concept,  large 
amounts  of  simulated  terrain  histograms  were 
generated for a range of distributions and quantities 
of  data,  from which  area  measurements  and  errors 
were  estimated.  This  was  done  using  synthetic 
Martian images composed from varying quantities of 
30  distinctive  terrains  selected  from  HiRISE  data. 
These  textures  were  smoothly  composited,  with 
additional  noise  to  generate  unlimited  independent 
ground truth. The aim was to corroborate predicted 
errors  by  means  of  comparison  to  empirically 
observed error distributions, thereby confirming that 
measurements  could  be  made  within  theoretically 
estimated  accuracies.  Figure  1  confirms  error 
predictions  for  Monte-Carlo  data  and  shows  that 
error predictions for Martian data are almost within 
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practical ranges for real applications. Figure 2 shows 
that  high  levels  of  measurement  accuracy  can  be 
attained  on  Martian  data,  with  surface  areas 
estimated  to  within  a  couple  of  percent  of  ground 
truth values. Figure 3 shows an example composite 
Martian terrain used during testing.
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Figure 1: Top, ratio of observed to predicted errors 
on Monte-Carlo histograms. Bottom, area error ratios 
plotted against image size for 10 groups of 3 Martian 
terrains for composite images of width (2048 pixels)

3. Conclusions

Our automated approach for planetary image analysis 
is unique amongst previously proposed methods and 
(to  our  knowledge)  the  only  one  capable  of 
producing  data  specific  error  estimates.  Also,  our 
method is the only one to provide a goodness-of-fit 
function  as  a  means  of  identifying  problematic 
incoming data. Testing on Martian data reveals that 
error predictions on real images could be improved, 
perhaps by the use of a calibrated DOF scaling, but 
estimates achieved within a factor of 2 are sufficient 

for  preventing  over-interpretation  of  measurements 
and  hence  our  method  is  approaching  practical 
utility.
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Figure 2: Percentage measurement accuracies 
attainable on Martian surface area measurements.

Figure 3: Example composite Martian image.
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