

Search for evidence of C₄N₂ on Titan with new spectroscopic data

A. Jolly (1), Y. Benilan (1), A. Fayt (2), C. Nixon (3), D. Jennings (3), C. Anderson (3), G. Bjaraker (3)

(1) LISA, Université Paris Est Créteil, 61 Av. du Général de Gaulle, 94010 Créteil Cedex, France.

(2) Université catholique de Louvain, chemin du cyclotron 2, 1348 Louvain la neuve, Belgium.

(3) Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt MD 20113, USA.

1. Introduction

The Composite Infrared Spectrometer (CIRS) on-board Cassini has recorded spectra in the far and mid-infrared since 2004 with a spectral resolution of up to 0.5 cm⁻¹. Mismatch between observed spectra and model spectra obtained from the available line lists has led us to study the spectroscopic parameters of HC₃N, C₄H₂ and C₂N₂, the longest gas phase carbon chains observed so far on Titan. Band intensities, hot band intensities, and line lists were systematically verified by comparison with new laboratory spectra. Erroneous band intensities as well as an absence or shortage of hot band transitions in the line lists leading to model-data mismatches and inaccurate quantifications have been found.

Improvement in the spectroscopic parameters has led to the detection of ¹³C isotopologues of HC₃N [1] and C₄H₂ [2]. The study on C₂N₂ opens the way to the detection of ¹⁵N isotopologues whose abundances could give some clues to understand the origin and the evolution of Titan's atmosphere [3]. Also, the higher accuracy of spectroscopic data used to model CIRS spectra will facilitate the search for longer carbon chains on Titan such as HC₅N, C₆H₂ and C₄N₂. Our recent measurements obtained at the SOLEIL synchrotron far infrared beam line of band intensities of C₄N₂ in the far and mid infrared domain have shown strong discrepancies with previous results [4]. Following the intensity measurements, a careful analysis of high resolution data has led to the first line lists for C₄N₂, which gives us the chance to determine precise abundance upper limits of this molecule in Titan's atmosphere.

2. C₄N₂

C₄N₂ has not been observed so far in the gas phase in Titan's atmosphere. The strongest observable bands are situated in the far infrared at 472 and 107 cm⁻¹. In 1987, Khanna et al. [5] have measured the experimental infrared spectra of solid C₄N₂ and found a strong absorption band at 478 cm⁻¹ matching an unassigned absorption feature in the thermal emission spectrum of Titan observed by the Voyager mission. Later, Dello Russo and Khanna [6] have extended the wavelength domain of their measurements towards the far infrared and observed another strong absorption feature in the spectra of solid C₄N₂ at 121 cm⁻¹. As suggested by the authors, the observation of the same feature in Titan would be a strong verification of the presence of solid C₄N₂ in Saturn's biggest satellite. But this feature has not been detected yet. Using radiative transfer modeling, Coustenis et al. (1999) [7] have confirmed the agreement between the observed spectral feature at 478 cm⁻¹ and the laboratory spectrum of solid C₄N₂. An upper limit for the vapor mole fraction has been determined. As estimated by Samuelson et al. (1997) [8] it is two orders of magnitude lower than the inferred concentration of C₄N₂ ice. This is of course not expected under thermal equilibrium conditions. The authors thus proposed to explain the disequilibrium between the two C₄N₂ phases as due to the rapidly changing conditions in Titan's atmosphere after equinox. The proposed scenario is that a strong enhancement of C₄N₂ in both phases takes place during the dark polar winter. After equinox, the gas is rapidly destroyed by sunlight but because of delayed response to the changing seasons, Titan's polar atmosphere appears to be still cooling

down enhancing the icy component. This scenario has been tested by de Kok et al. (2008) [9] using Cassini CIRS data from 2007 at the end of the winter season when significantly more C_4N_2 gas is expected. An upper limit of gaseous C_4N_2 is deduced from the intensity measured by Khlifi et al. [4] of a band at 614 cm^{-1} and a comparison with an observed band of HC_3N at 663 cm^{-1} . The obtained value of 9.10^{-9} does not appear to be in agreement with the scenario of a large build up of C_4N_2 during the polar winter. A plausible explanation to the disequilibrium observed by Voyager is still to be found. Note also that C_4N_2 ice has yet to be confirmed by CIRS observations, which are unfortunately of low sensitivity in this wavelength domain.

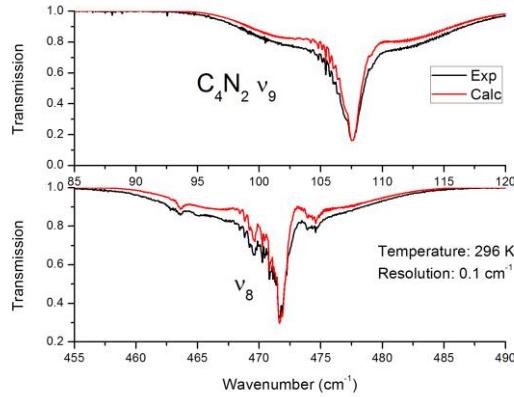


Figure 1: Comparison between v_8 and v_9 band transmission of C_4N_2 and line by line spectra calculation showing a perfect match of all spectral features and a small deficit in the intensity.

Band intensities are necessary to determine upper limits and C_4N_2 has been studied quantitatively only once in the past by Khlifi et al. [4]. Our recent measurements show that Khlifi's results are systematically two strong by a factor 2.3 due to confusion between common logarithm and natural logarithm. Another interesting result concerns the first measurement of the intensity of the band at 107 cm^{-1} (v_9). Surprisingly, it turned out to be the strongest band in the whole infrared domain, 60% stronger than the v_8 band at 472 cm^{-1} . Using the global analysis tools developed by A. Fayt, we were able to make a new analysis of old high resolution data and calculate the first line lists for C_4N_2 . Due to very large values of the partition functions, the band intensities spread among a huge number of lines. As can be seen in figure 1, 700000 lines are not quite

enough to match room temperature transmission spectra but all the spectral features are well reproduced. Since partition functions values decrease rapidly at lower temperature, we are confident that the line lists will be good enough in the temperature range of Titan's atmosphere sounded by the CIRS instrument. C_4N_2 gas phase abundance upper limits in Titan's atmosphere using the v_9 band at 107 cm^{-1} and the v_8 band at 472 cm^{-1} will be presented and compared to solid phase abundances. Compatibility between the solid and the gas phase abundances will be discussed.

References

- [1] Jennings DE, Nixon C., Jolly A, Bézard B, Coustenis A, Vinatier S., et al., Isotopic Ratios in Titan's Atmosphere from Cassini CIRS Limb Sounding: HC_3N in the North. *Astrophysical Journal*, **681**: p. L109-L111 (2008).
- [2] Jolly A, Fayt A., Benilan Y, Jacquemart D, Nixon CA, Jennings DE., The v_8 bending mode of diacetylene: from laboratory spectroscopy to the detection of ^{13}C isotopologues in Titan's atmosphere. *Astrophysical Journal*, **714**(1): p. 852-859 (2010).
- [3] Fayt, A., Jolly A, et al., Frequency and intensity analyses of the far infrared v_5 band system of cyanogen (C_2N_2) and applications to Titan. *JQSRT*. **113**(11): p. 1195-1219 (2012).
- [4] Khlifi, M., et al., Gas infrared spectra, assignments, and absolute IR band intensities of C_4N_2 in the 250 - 3500 cm^{-1} region: implications for Titan's stratosphere. *Spectrochimica Acta Part A*, **53**: p. 702-712 (1997).
- [5] Khanna, R.K., M.A. Perera-Jarmer, and M.J. Ospina, Vibrational Infrared and Raman spectra of dicyanoacetylene. *Spectrochim. Acta*, **43A**(3): p. 421-425 (1987).
- [6] DelloRusso, N. and R.K. Khanna, Laboratory infrared spectroscopic studies of crystalline nitriles with relevance to outer planetary systems. *Icarus*, **123**(2): p. 366-395 (1996).
- [7] Cousténis, A., et al., Plausible condensates in Titan's stratosphere from Voyager infrared spectra. *Planetary and Space Science*, **47**(10/11): p. 1305-1329 (1999).
- [8] Samuelson, R.E., et al., C_4N_2 ice in Titan's North Polar Stratosphere. *Planet. Space Sci.* **45**(8): p. 941-948 (1997).
- [9] de Kok, R., P.G.J. Irwin, and N.A. Teanby, Condensation in Titan's stratosphere during polar winter. *Icarus*, **197**(2): p. 572-578 (2008)