

CO₂ as the driving force of comet Hartley 2's activity

Diana Laufer and Akiva Bar-Nun

Dept. of Geophysical, Atmospheric and Planetary Sciences Tel-Aviv University, Tel-Aviv 6997801, Israel
 (dianal@post.tau.ac.il; Phone: +97236408256; Fax: +97236409282)

Abstract

The EPOXI mission found that CO₂ is the major driving force of the activity of Comet 103P/Hartley 2. In our experimental study we observed massive ice grain ejection, driven by CO₂ release, which was measured and filmed, during the ice sample heating process.

1. Introduction

CO₂ is the major driving force of the activity of Comet 103P/Hartley 2 (Fig 1). The active nucleus area is ~2%, but that there is a large halo of icy grains emanating from it that contributes more than 90% to the total water production rate at perihelion [1-2]. In our experimental study CO₂ was trapped underneath “cometary” amorphous water ice. During the heating process, massive ice grains driven by CO₂ jets were measured, during several temperature ranges.

2. Experimental results

Layers of CO₂ and amorphous water ice of 100 μm thick were deposited on a 17 cm^2 rectangular gold coated copper plate, cooled cryogenically in the vacuum chamber to 40-50K [3]. CO₂ is trapped in low temperature “cometary” amorphous water ice, about 4 orders of magnitude more efficient than gases such as CO, CH₄ and Ar. The plate was then warmed up and the gases, water vapor and grains were recorded by a quadrupole mass filter. Fast ice grains, having speed at least 1.67 m sec^{-1} , could reach the ion source and were recorded during the heating process. The frozen CO₂ sublimated and flowed outward, carrying with it a large flux of CO₂, water vapor and ice grains. The ice grains sizes from 1-150 μm [4] was measured by a mass filter with a time resolution of milliseconds at a rate of 0.25 sec^{-1} (Fig. 2). The heating process was filmed with a microscope camera (Fig. 3). The individual grains are

seen as streaks for 33 msec (Fig 3a), forming “craters” (Fig 3b, c).

3. Figures

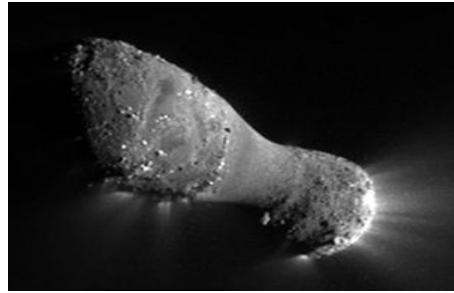


Figure 1: Jets from the surface of Comet Hartley 2 (NASA's EPOXI mission).

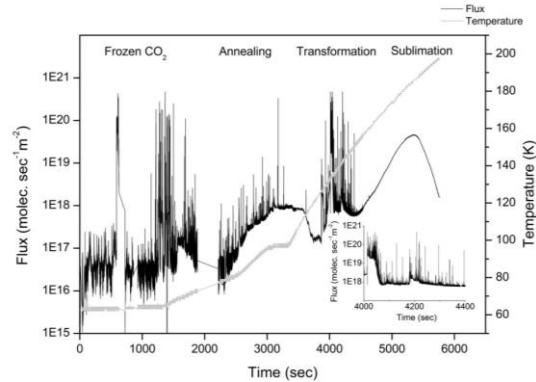
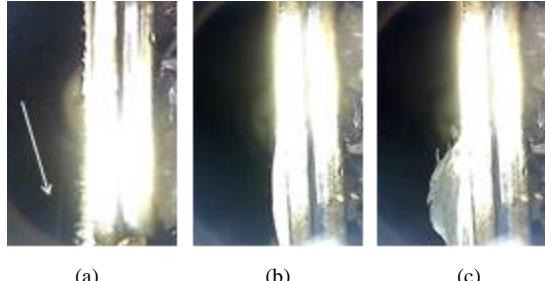



Figure 2: Ice grain ejection from thin ice samples: 2 layers were formed: a ~100 μm layer of frozen CO₂ covered by a ~100 μm layer of amorphous ice. In the insert, an extended time scale shows wide water peaks along with narrow ones.

flow from ice and implications to Comets, Triton and Mars. Icarus, Vol. 222, pp. 73-80, 2013.

Figure 3: Ice grains are seen to be ejected by CO₂ from a 100 μm gas-laden amorphous ice upon its heating. (a) the individual grains are seen as streaks, because they pass the entire frame during 33 msec; (b) swelling of the ice layer and (c) its detachment from the ice surface.

4. Summary and Conclusions

The EPOXI mission to Comet 103P/Hartley 2 found strong activity in water grains release driven by CO₂ jets. Our experimental findings can explain the comet nucleus activity and surface changes and show correlations between CO₂ jets and ice grains upon heating.

Acknowledgements

This research was supported by Ministry of Science and Technology grant 3-8349. We thank Dr. Igal Pat-El and Dr. Ronen Jacovi for assistance in the experiments.

References

- [1] A'Hearn, M.F., et. al.: EPOXI at Comet Hartley 2. Science, Vol. 332, pp. 1396-1400, 2011.
- [2] Meech, K.J., et al.: EPOXI: Comet 103P/Hartley 2 Observations from a Worldwide Campaign. The Astrophysical Journal Letters, Vol. 734, L1, 2011.
- [3] Bar-Nun A., Laufer D., Rebolledo O., Malyk S., Reisler, Hanna and Wittig C.: Gas Trapping in Ice and Its Release upon Warming, The Science of Solar System Ices, Astrophysics and Space Science Library, Vol. 356, Springer Science+Business Media New York, pp. 487-499 2013.
- [4] Laufer, D., Bar-Nun, A., Pat-El, I., Jacovi, R.: Experimental studies of ice grain ejection by massive gas