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Abstract

Time evolution of CO; ice state and composition
are keys to constrain the physical behavior of
Martian seasonal processes. Here we present a
radiative transfer inversion method based on
maximum likelihood to retrieve quantitatively
these properties. Our method separates the direct
model and the comparison between the data and
the direct model by creating a look up table, to
reduce the numerical cost. Still, it gives an
estimation on the quality of the sampling and the
uncertainty on the solution.

1. Introduction

The purpose of this work is to build an inversion
method rapid enough to allow the inversion of a large
amount of spectra, to retrieve the Martian surface
characteristics : CO, ice state and thickness,
proportions and grain sizes of impurities. Since (i)
the radiative transfer equations [1,2] cannot be
inverted analytically, (ii) a Monte Carlo method [4] is
too slow due to the high spectral resolution of the ice
bands (one direct computation of a spectra of 54000
sampling at 0,5 cm™ takes 0,7 s), (iii) the number of
spectra to invert is very high (up to 7100 000 spectra
per image) we built a method based on a spectral
library database, and comparison between the
measured data an the spectral library.

2. Method

The first step of the method is to generate a spectral
library, using a radiative transfer model [2] at high
resolution, down sampled at the instrument resolution
of CRISM [5] (computation time ~15 days). This
library will contain different synthetic spectra,
sampling regularly the parameters space. Once this
library is created, it is stored as a look up table. The
second step is to compare the measured data of
CRISM [5], corrected from the atmosphere

contribution (gas and aerosols) [3] to the synthetic
database. We developed a spectral comparison
method (inversion) that allows taking into account
any possible bias in atmospheric correction. It
consists in a likelihood function defined as follows :

=1

L= eXp (_% X ¢ {ds‘im - d‘mes) 6 (dsz'm - d‘mes})
where dim and dnes are the simulated and measured
spectra, and C is a nyXn, covariance matrix, 7, being
the number of spectral bands used.

The solution is the marginal density of the likelihood
for each parameter (see fig. 2). It can be interpreted
as an a posteriori state of information [4] if the a
priori information is constant in the parameter space.
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Figure 1 : lllustration of the interest of the covariance
matrix. The red and green synthetic spectra are compared
to the measured one (black), d being the distance given by
the least squares method, and L the likelihood given by our
method. The green dashed spectrum corresponds to the
green one from which we have withdrawn the components
on the first two eigenvectors of C (level and slope).
According to the least squares method, the red spectrum
has a better agreement with the measure, its distance being
smaller, but our method chooses the green one, its
likelihood being many order of magnitude bigger than the
red's. Note that a perfect match has a likelihood L=1 (and
a distance d=0).




3. Covariance matrix

C is the covariance matrix of the measured spectra
we expect. In the bayesian framework under gaussian
hypothesis, it shall represent the state of uncertainty
of the data [4]. A diagonal coefficient C;; represents
the variance of the reflectance at the wavelength i,
and the coefficient C;; represents the covariance
between the reflectances at the wavelengths i and ;.

C will traduce different sources of uncertainties : (i)
the measure itself (noise), (ii) the uncertainties we
expect from the atmospheric corrections (aerosols
optical thickness...), (iii) the uncertainties in the
estimation of the geometry (incidence and
emergence), due to local topography. From
numerical simulation, we identify that at first order
both  atmospheric  correction and geometry
uncertainties may change the level (+/- 0.1) and the
global slope of spectra (+/- 0.03 um™). Therefore, we
created the two corresponding eigenvectors/
eigenvalues into C. The noise subspace (dimension
m,-2) has been constructed orthogonally to the
previous 2D subspace using the Gram-Schmidt
process.

Using such a matrix instead of a much simple least
squares method with diagonal C improves the
description of the data uncertainty. Also, it removes a
time consuming ad hoc fitting step of continuum and
slope for each couple of observed and look up table

spectra.
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Figure 2 : Preliminary result of the likelihood versus
value of the slab ice thickness. (red) Poor sampling : only
one value is likely to be the solution, when the likelihood of
the other parameters is negligible. (black) More
satisfactory sampling : the likelihood has a bell shaped
around the most likely value.
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4. Results and discussion

The calculation time depends highly on the sampling
of the parameters space. The coarser the sampling is,
the faster is the computation. But the precision of the

inversion is directly bound to the sampling of the
parameters, so an iterative process is required until
the sampling is satisfactory, that is when the
uncertainties on the result do not depend on the
sampling. On fig. 2 you can see a poor sampling in
red and a better one in black. The sampling giving
the black curve shows a good apparent sampling of
the marginal density. The computation time needed
for each spectrum once the library is computed is
about 4 s, that allows the inversion of a large amount
of spectra.

5. Conclusion

We built an inversion method that combines the
computation speed of a lookup table and the
statistical advantages of a bayesian method. The
quality of the inversion depends on the quality of the
sampling and the covariance matrix. Once the
spectral library is computed, this method permits to
compute an inversion of one measured spectrum in a
couple of seconds, where a Monte Carlo would take
days. Creation of the library is the long step, but only
required once.
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