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Abstract

Time evolution of CO2 ice state and  composition 
are  keys  to  constrain  the  physical  behavior  of 
Martian  seasonal  processes.  Here  we  present  a 
radiative  transfer  inversion  method  based  on 
maximum  likelihood  to  retrieve  quantitatively 
these properties. Our method separates the direct 
model and the comparison between the data and 
the direct  model  by creating a look up table,  to 
reduce  the  numerical  cost.  Still,  it  gives  an 
estimation on the quality of the sampling and the 
uncertainty on the solution.

1. Introduction

The  purpose  of  this  work  is  to  build  an  inversion 
method rapid enough to allow the inversion of a large 
amount  of  spectra,  to  retrieve  the  Martian  surface 
characteristics  :  CO2 ice  state  and  thickness, 
proportions and  grain  sizes  of  impurities.  Since  (i) 
the  radiative  transfer  equations  [1,2]  cannot  be 
inverted analytically, (ii) a Monte Carlo method [4] is 
too slow due to the high spectral resolution of the ice 
bands (one direct computation of a spectra of 54000 
sampling at  0,5 cm-1 takes  0,7 s), (iii) the number of 
spectra to invert is very high (up to 100 000 spectra 
per  image)  we built  a  method based  on a  spectral 
library  database,  and  comparison  between  the 
measured data an the spectral library.

2. Method

The first step of the method is to generate a spectral 
library,  using a radiative transfer  model [2] at  high 
resolution, down sampled at the instrument resolution 
of  CRISM  [5]  (computation  time  ~15  days).  This 
library  will  contain  different  synthetic  spectra, 
sampling regularly the parameters  space.  Once this 
library is created, it is stored as a look up table. The 
second  step  is  to  compare  the  measured  data  of 
CRISM  [5],  corrected  from  the  atmosphere 

contribution (gas  and  aerosols)  [3]  to  the synthetic 
database.  We  developed  a  spectral  comparison 
method (inversion)  that  allows  taking  into  account 
any  possible  bias  in  atmospheric  correction.  It 
consists in a likelihood function defined as follows : 

where  dsim and  dmes are the simulated and measured 
spectra, and C is a nb×nb  covariance matrix, nb being 
the number of spectral bands used. 
The solution is the marginal density of the likelihood 
for each parameter (see fig. 2). It can be interpreted 
as an a posteriori  state  of information [4]  if  the  a 
priori information is constant in the parameter space.

Figure  1 :  Illustration of  the interest  of  the covariance  
matrix. The red and green synthetic spectra are compared  
to the measured one (black), d being the distance given by  
the least squares method, and L the likelihood given by our  
method.  The  green  dashed  spectrum corresponds  to  the  
green one from which we have withdrawn the components  
on  the  first  two  eigenvectors  of C (level  and  slope).  
According to the least squares method, the red spectrum  
has a better agreement with the measure, its distance being  
smaller,  but  our  method  chooses  the  green  one,  its  
likelihood being many order of magnitude bigger than the  
red's. Note that a perfect match has a likelihood L=1 (and  
a distance d=0).
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3. Covariance matrix

C is the covariance matrix of the measured spectra 
we expect. In the bayesian framework under gaussian 
hypothesis, it shall represent the state of uncertainty 
of the data [4].  A diagonal coefficient Ci,i represents 
the variance of the reflectance at  the wavelength  i, 
and  the  coefficient  Ci,j represents  the  covariance 
between the reflectances at the wavelengths i and j. 
C will traduce different sources of uncertainties : (i) 
the measure  itself  (noise),  (ii)  the  uncertainties  we 
expect  from  the  atmospheric  corrections  (aerosols 
optical  thickness...),  (iii)  the  uncertainties  in  the 
estimation  of  the  geometry  (incidence  and 
emergence),  due  to  local  topography.  From 
numerical simulation,  we identify that at first order 
both  atmospheric  correction  and  geometry 
uncertainties may change the level (+/- 0.1) and the 
global slope of spectra (+/- 0.03 µm-1). Therefore, we 
created  the  two  corresponding  eigenvectors/ 
eigenvalues into  C.  The noise subspace (dimension 
nb--2)  has  been  constructed  orthogonally  to  the 
previous  2D  subspace  using  the  Gram-Schmidt 
process.
Using such a matrix instead of a much simple least 
squares  method  with  diagonal  C improves  the 
description of the data uncertainty. Also, it removes a 
time consuming ad hoc fitting step of continuum and 
slope for each couple of observed and look up table 
spectra.

Figure  2 :  Preliminary  result  of  the  likelihood  versus  
value of the slab ice thickness. (red) Poor sampling : only  
one value is likely to be the solution, when the likelihood of  
the  other  parameters  is  negligible.  (black)  More  
satisfactory sampling : the  likelihood has a bell shaped 
around the most likely value. 

4. Results and discussion

The calculation time depends highly on the sampling 
of the parameters space. The coarser the sampling is, 
the faster is the computation. But the precision of the 

inversion  is  directly  bound to  the  sampling  of  the 
parameters,  so an iterative process  is  required until 
the  sampling  is  satisfactory,  that  is  when  the 
uncertainties  on  the  result  do  not  depend  on  the 
sampling. On fig. 2 you can see a poor sampling in 
red and a better one in black. The sampling giving 
the black curve shows a good apparent sampling of 
the marginal  density.  The computation time needed 
for  each  spectrum once  the  library  is  computed  is 
about 4 s, that allows the inversion of a large amount 
of spectra.

5. Conclusion

We  built  an  inversion  method  that  combines  the 
computation  speed  of  a  lookup  table  and  the 
statistical  advantages  of  a  bayesian  method.  The 
quality of the inversion depends on the quality of the 
sampling  and  the  covariance  matrix.  Once  the 
spectral library is computed, this method permits to 
compute an inversion of one measured spectrum in a 
couple of seconds, where a Monte Carlo would take 
days. Creation of the library is the long step, but only 
required once. 
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