

Transiting Earth: UV-NIR model transmission spectrum.

Y. Bétrémieux (1) and **L. Kaltenegger** (1,2)

(1) MPIA, Königstuhl 17, 69117 Heidelberg, Germany (betremieux@mpia.de / Fax:+49-6221-528-246)

(2) Harvard Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA

Abstract

Transmission spectroscopy is a powerful technique to characterize the atmospheres of exoplanets. We model the atmospheric cross section from 115 to 1000 nm of Earth viewed as a transiting exoplanet around a Sun-like star to guide instrument studies for future mission concepts. We build upon the model developed by Kaltenegger & Traub (2009) [1], for the Earth seen in a transit geometry, with a new database of continuous absorbers' cross sections. We also add Rayleigh scattering and refraction from N₂, O₂, Ar, and CO₂, and show their effects on the spectrum as well as the spectral signatures of each major atmospheric species. Clouds do not significantly affect this picture because refraction prevents the lowest 12.75 km of the atmosphere to be sampled by a distant observer.

The model spectrum shows prominent features of O₂ and O₃ above a Rayleigh scattering/Refraction background. Below 200 nm, ultraviolet (UV) O₂ absorption increases the effective planetary radius by up to 185 km versus 14 km in the near-infrared (NIR) due predominantly to refraction. This apparent change of about 2.7% of the Earth's radius from the UV to the NIR shows that broad spectral coverage is essential to characterize exoplanetary atmospheres and that the ultraviolet is an interesting spectral region for future space missions.

Acknowledgements

The authors acknowledge support from DFG funding ENP Ka 3142/1-1 and NASA NAI.

References

[1] Kaltenegger, L., & Traub, W. A. 2009, ApJ, 698, 519

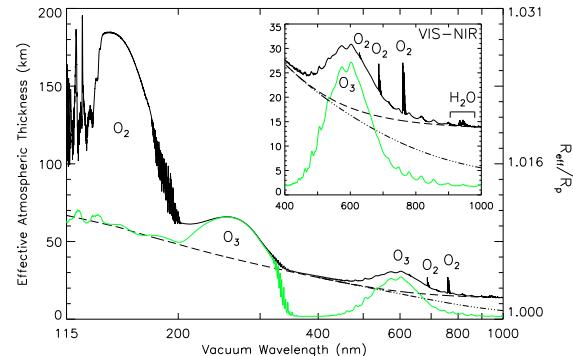


Figure 1: Effective atmospheric thickness and effective planetary radius, R_{eff} (expressed in Earth radii, R_p), of a transiting Earth from the UV to the NIR (main panel), and from the visible to the NIR (small inserted panel). The solid curve shows the overall spectrum while the green curve shows the individual contribution of O₃. Prominent spectral features from O₂, O₃, and H₂O, are identified. The combined effects of refraction and Rayleigh scattering (dashed line) by N₂, O₂, Ar and CO₂, and that of Rayleigh scattering alone (triple dot-dashed line) are also shown.