

Ablation of Venus' O⁺ by unshocked solar wind: Venus Express observations during solar minimum

Yong Wei (1), Markus Fraenz (1), Eduard Dubinin (1), Tielong Zhang (2), Riku Jarvinen (3), Weixing Wan (4), Esa Kallio (3), Glyn Collinson (5), Stars Barabash (6), Krupp Norbert (1), Joachim Woch (1), Rickard Lundin (6), and Magda delva (2)

(1) Max-Planck Institute for Solar System Research, Katlenburg-Lindau, Germany (wei@mps.mpg.de), (2) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, (3) Finnish Meteorological Institute, Space Research Unit, P.O. Box 503, FI-00101, Finland, (4) Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, (5) Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20071, USA., (6) Swedish Institute of Space Physics, Kiruna, Sweden (wei@mps.mpg.de)

Abstract

Venus, without Earth-like dipole field, has been losing volatiles into the interplanetary space as a consequence of solar wind forcing. Solar wind is shocked near Venus, and the shocked solar wind interacts with upper atmosphere and scavenges particles in various ways [1], as disclosed by spacecrafts' observations over decades [2-4]. Applying the observed loss rate on the history of solar system reveals that planetary atmospheric loss could change the evolution of planetary habitability [5]. In theory the loss rate may be much higher since unshocked solar wind can directly ablate charged particles [6], but this phenomenon has never been observed at Venus though it has been observed to be prevailing at near-Sun comets [7].

We report Venus Express observations of escaping oxygen ions (O⁺) in the unshocked solar wind during a solar minimum. We have found 80 cases during 2006-2010, and found that the appearance of O⁺ ions are under control of interplanetary magnetic field. The estimated O⁺ loss rate is smaller than but comparable to that driven by shocked solar wind [8]. Our results suggest that the atmospheric loss at Venus might be significantly underestimated by previous studies, and thus the importance of Earth-like dipole field to planetary habitability should be appreciated further.

References

[1] Dubinin, E., et al. Ion energization and escape on Mars and Venus, *Space Sci. Rev.*, 162, 173–211 (2011).

[2] Brace, L. H., Theis, R. F. & Hoegy, W. R. Plasma clouds above the ionopause of Venus and their implications. *Planet. Space Sci.* 30, 29–37 (1982).

[3] Moore, K. R., McComas, D. J., Russell, C. T. & Mihalov, J. D. A statistical study of ions and magnetic fields in the Venus magnetotail. *J. Geophys. Res.* 95, 12,005–12,018 (1990).

[3] Barabash, S. et al. The loss of ions from Venus through the plasma wake. *Nature* 450, 650 (2007).

[5] Lammer, H. et al. Atmospheric escape and evolution of terrestrial planets and satellites. *Space Sci. Rev.* **139**, 399–436 (2008).

[6] Luhmann, J. G., Ledvina, S. A., Lyon, J. G. & Russell, C. T. Venus O⁺ pickup ions: Collected PVO results and expectations for Venus Express. *Planet. Space Sci.* 54, 1457–1471 (2006).

[7] Coates, A. J. & Jones, G. H. Plasma environment of Jupiter family comets. *Planet. Space Sci.* 57, 1175–1191 (2009).

[8] Fedorov, A. S. et al. Measurements of the ion escape rates from Venus for solar minimum, *J. Geophys. Res.*, 116, A07220 (2011).