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Abstract higher lying states (see e.g. Fig. 1), and the rate
at which it is depopulated by radiative de-excitation
Molecular nitrogen in Titan's atmosphere is excited and de-excitation by collisions with other atmospheric
to different vibrational and electronic states by di- species. Therefore, in order to calculate the popula-
rect photon absorption and electron impact. Here we tion of the different levels we need a large number
present detailed calculations for the vibrational pop- of parameters that define the transition rates among
ulation of different electronic states and the emission different states. These include electron impact cross

rates from the de-excitation of these states. sections and Frank-Condon factors for the calculation
of the production rates of different vibrational levels
1. Introduction within each electronic state, transition rates among

vibrational levels within each electronic state, transi-
The interaction of N with high energy photons and  tion rates among vibrational levels of different elec-
electrons excites the molecule to different vibrational tronic states, as well as de-excitation rates of different
and electronic levels (). De-excitation from these  states by molecular collisions and losses in state pop-
states can result by spontaneous emission and by colylation by pre-dissociation. We obtain these parame-
lisions of the N with other molecules. Competition  ters from the latest compilations and studies available
among these processes will define the thermal struc-[2, 3, 4, 5].
ture of the atmosphere. Therefore a detailed calcula-
tion for the population of the different excited states
is necessary in order to calculate an accurate tempera-
ture profile, as well as emission rates that can be com-
pared with spacecraft observations such as those by the
Cassini/UVIS instrument for Titan's case. 102k

Ayt
u

-1

-3,

Production rate (em™s7!)

2. Model Description

The starting point of our calculations are the excitation
and ionization rates based on high resolution cross sec-
tions of N, that we have performed in the past [1]. We
expand on these calculations by calculating the pop- )
ulation for the first 21 vibrational levels of the major 107°F . R E
singlet and triplet electronic states of ldnd doublets ‘ ‘ A .
of Nj. These include the statesy 'S}, A 3%, 0 5 10 15 20
B BHg, w 3Au, B 32;’ o 12’;’ a 11_19’ w 1Au, Vibrational Level
b 'L, ¢y '8, C *IL,, E 35 for Ng, and X 257,
A2, B2 andC 257 for NJ. Figure 1: Production rates for the A} state at
The popu|ati0n of each vibrational/electronic level different vibrational levels. Contributions from di-
depends on the rate this level is populated by direct rect electron impact excitation (solid line) and cascade
excitation by photons/electrons and by cascade fromfrom higher electronic states (broken lines) are shown.
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Figure 2: Vibrational populations for differentsN
states scaled to the density of the N 'S} (v = 0)
level.

3. Results

Our calculations for the vibrational population for dif-
ferent electronic states close to 1100 km in Titan's
atmosphere are shown in Fig. 2. The longest lived
metastable state is the,N4 32; state followed by
the ground vibrational level of the” 3A,, state. All
other states/levels have small populations due to their
rapid de-excitation through radiative emission and/or
collisions, the relative role of each of these processes
depending on the local atmospheric density. Close to
1100 km radiative transitions dominate providing an
emission spectrum that covers a wide range of wave-
lengths (Fig. 3). We will further discuss what con-
straints on the atmospheric properties we can derive
by comparison with the available observations.
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Figure 3: Emission rates for all transitions included in

shaw. Electron-impact excitation heating rates in the at- the model. Strongest emissions are color coded.



