New features of the Martian Trojan clouds

A. A. Christou
Armagh Observatory, Armagh, UK (aac@arm.ac.uk / Fax: +44-2837-527174)

Abstract

New stable Martian Trojans are identified within the Minor Planet Center list of asteroids. All lie within the L₅ (trailing) Trojan cloud. A clustering of proper elements exists around 5261 Eureka. It is statistically significant even when taking into account the restricted space of orbital elements within which stable Martian Trojans could exist. This feature is likely the natural end result of the collisional processing or, alternatively, the rotational fission of a progenitor L₅ Trojan of Mars. It offers a new testing ground for models of the physical and dynamical evolution of small bodies.

1. Introduction

Trojan asteroids are confined by solar and planetary gravity to lead 60° ahead (L₄) or trail 60° behind (L₅) a planet’s position along its orbit [1]. Mars is the only terrestrial planet known to host stable Trojans [2, 3], two at L₅ and one at L₄. The debate of the existence and origin of terrestrial planet Trojans is coming to the fore [4, 5] due to the upcoming Gaia [6] and NEOSSat [7] missions as well as new deep, wide field sky surveys such as PanSTARRS [8] and LSST [9].

Table 1: Proper elements and absolute magnitude H of Martian Trojans. All are L₅ librators except 1999 UJ₂. New Trojans are marked in bold.

<table>
<thead>
<tr>
<th>Designation</th>
<th>H</th>
<th>D_p</th>
<th>I_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5261) Eureka</td>
<td>16.0</td>
<td>11.4</td>
<td>0.0570</td>
</tr>
<tr>
<td>(101429) 1998 VF₁₁</td>
<td>17.0</td>
<td>38.1</td>
<td>0.0817</td>
</tr>
<tr>
<td>(121514) 1999 UJ₁</td>
<td>16.9</td>
<td>70.7</td>
<td>0.0346</td>
</tr>
<tr>
<td>(311999) 2007 NS₂</td>
<td>17.8</td>
<td>13.9</td>
<td>0.0444</td>
</tr>
<tr>
<td>2011 UN₆₃</td>
<td>19.7</td>
<td>13.8</td>
<td>0.0466</td>
</tr>
<tr>
<td>2011 SC₃ₙ</td>
<td>19.4</td>
<td>17.4</td>
<td>0.0717</td>
</tr>
</tbody>
</table>

* The full proper amplitude of libration

2. New Trojans

Searching through the Minor Planet Center database¹ produced 6 asteroids with orbital elements similar to those of existing Trojans. Three of those (see Table 1) were observed on at least two oppositions, so their orbits are reasonably secure. The numerically integrated nominal orbits of these three asteroids, as well as those of 100 randomly-generated clones per object, librate around the L₅ point at the present time (Fig. 1) and continue to do so for the full 10⁸ yr duration of the simulations. Longer integrations [10] demonstrate stability, over Gyr timescales, of these asteroids and, in addition, 2001 DH₄₇. This raises the total number of stable Martian Trojans to 7.

3. Evidence for L₄/L₅ asymmetry

All Martian Trojans but one librate around L₅, a statistically unlikely outcome (probability of 6%) if equally likely discovery at L₄ or L₅ is assumed. Since all the asteroids were discovered by general-purpose asteroid searches, this likely reflects a real asymmetry in the Martian Trojan population rather than the result of observational bias. Further, the new objects are significantly fainter than previously known Trojans (Table 1) while the most recent dedicated search produced no new discoveries [11]. These facts argue strongly that we are seeing the results of the gradually increasing limited magnitude of asteroid surveys, to be extended even further by PanSTARRS and LSST.

4. The Eureka cluster

There is an apparent similarity between the proper elements of Eureka and the three new objects (Table 1). A statistical analysis shows that the degree of “clustering” within the phase space domain for stable Martian Trojans [2] is significant at the 3% level². The implication is that either there is a (hitherto unknown) mechanism that brings Trojan orbits together or that these

¹Available at http://www.minorplanetcenter.net/db_search
²Conservatively assuming that 2001 DH₄₇ is not part of the cluster; calculation of its proper elements is in progress
objects, which we collectively refer to as the Eureka cluster, are genetically related.

5. Implications and future work

Given these new results and the (albeit limited) available physical information on these objects, likely origin scenarios include the collisional comminution of larger parent bodies or the formation of the smaller objects by rotational fission [12]. Notably, unlike most objects in the inner solar system, Martian Trojan asteroids do not suffer from the effects of planetary close encounters. This makes them ideal testing grounds for models of orbital and rotational evolution under non-gravitational forces and torques. A programme of physical characterisation of known Trojans, combined with new results on $H > 20$ Trojans by the next-generation sky surveys [5], will advance our understanding of the origin and evolution of these intriguing members of the solar system and, possibly, offer clues to terrestrial planet formation.

Acknowledgements

The author wishes to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. Astronomical research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

References