

Representation of planetary magnetospheric environment with the paraboloid model

V. V. Kalegaev (1), **I. I. Alexeev** (1), E. S. Belenkaya (1), L.R. Mukhametdinova (1), M. L. Khodachenko (2,1), V. Génot (3), E. J. Kallio (4), T. Al-Ubaidi (2), R. Modolo (5)

(1) Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics (MSU SINP), 1/2, Leninskie gory, Moscow 119991, Russia, (2) Space Research Institute, Austrian Academy of Science, Graz, Austria, (3) IRAP, CNRS/Université Paul Sabatier, 31028 Toulouse, France, (4) Finnish Meteorological Institute, Helsinki, Finland, (5) LATMOS, CNRS/Université de Versailles Saint Quentin,

Abstract

Paraboloid model of the Earth's magnetosphere has been developed at Moscow State University to represent correctly the electrodynamics processes in the near-Earth's space [1]. This model is intended to calculate the magnetic field generated by a variety of current systems located on the boundaries and within the boundaries of the Earth's magnetosphere under a wide range of environmental conditions, quiet and disturbed, affected by Solar-Terrestrial interactions simulated by Solar activity such as Solar Flares and related phenomena which induce terrestrial magnetic disturbances such as Magnetic Storms. The model depends on a small set of physical input parameters, which characterize the intensity of large-scale magnetospheric current systems and their location. Among these parameters are a geomagnetic dipole tilt angle, distance to the subsolar point of the magnetosphere, etc. The input parameters depend on real- or quasi-real- time Empirical Data that include solar wind and IMF data as well as geomagnetic indices. A generalized paraboloid model was implemented to represent the magnetospheres of some magnetized planets, e.g. Saturn [2], Jupiter [3], Mercury [4]. Interactive models of the Earth's, Kronian and Mercury's magnetospheres, which take into account specific features of the modeled objects have been realized at Space Monitoring Data Center of SINP MSU [5]. The real-time model of the Earth's magnetosphere is currently working at SINP MSU Space Weather Web-site [6]. Data from different sources (satellite measurements, simulation data bases and online services) are accumulated inside a digital framework developed within the FP7 project IMPEX. Paraboloid model of the magnetospheres (PMM) is part of this infrastructure. A set of Web-services to provide the access to PMM calculations and to enable the modeling data post-processing

under SOAP protocol have been created. These will be implemented for easy data exchange within IMPEX infrastructure.

Acknowledgements

The work was supported by the International Grant of London Royal Society-RFBR No 12-02-92600-KO_a, RFBR Grants 12-05-00219-a and No 11-05-00894-a, and the European FP7 project IMPEX (No.262863).

References

- [1] Alexeev I.I., E.S.Belenkaya, S.Y.Bobrovnikov, V.V.Kalegaev, Modelling of the electromagnetic field in the interplanetary space and in the Earth's magnetosphere, Space Science Review, 107, N1/2, 7-26, 2003.
- [2] Alexeev, I. I., et al. A global magnetic model of Saturn's magnetosphere, and a comparison with Cassini SOI data, *Geophys. Res. Lett.*, 33, L08101, 2006.
- [3] Belenkaya E.S., Bobrovnikov S.Yu., Alexeev I.I., Kalegaev V.V., Cowley S., A model of Jupiter's magnetospheric magnetic field with variable magnetopause flaring, *PSS*, V. 53, pp.863-872, 2005.
- [4] Alexeev, I. I., et al , Mercury magnetospheric magnetic field after the first two MESSENGER flybys, *Icarus*, 209, 23-39, 2010.
- [5] <http://smdc.sinp.msu.ru/index.py?nav=paraboloid/index>
- [6] <http://swx.sinp.msu.ru>
- [7] Khodachenko, M., et al. (2011, January). *IMPEX Collaborative Project* - Proposal Grant Agreement No. 262863.