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Abstract

Independent Component Analysis (ICA) has recently
been shown to be a promising new path in data analy-
sis and de-trending of exoplanetary time series signals.
Such approaches do not require or assume any prior
or auxiliary knowledge on the data or instrument in
order to de-convolve the astrophysical light curve sig-
nal from instrument or stellar systematic noise. These
methods are often known as ‘blind source separa-
tion’ (BSS) algorithms. Unfortunately all BSS meth-
ods suffer from a amplitude and sign ambiguity of
their de-convolved components which severely limits
these methods in low signal-to-noise (S/N) observa-
tions where their scalings cannot be determined oth-
erwise. Here we present a novel approach to cali-
brate ICA using sparse wavelet calibrators. The Am-
plitude Calibrated Independent Component Analysis
(ACICA) allows for the direct retrieval of the indepen-
dent components’ scalings and the robust de-trending
of low S/N data. Such an approach gives us an unique
and unprecedented insight in the underlying morphol-
ogy of a data set, making this method a powerful tool
for exoplanetary data de-trending and signal diagnos-
tics.

1. Introduction

As we explore smaller and smaller extrasolar planet
around ever fainter stars, it is unsurprising that the
need for ever more accurate data-calibration and de-
trending techniques is a growing one. In the recent
past, there has been a notable emergence of so called
‘non-parametric’ data de-trending algorithms in the
fields of transiting extrasolar planet and time-resolved
exoplanetary spectroscopy [1, 4, 2, 5, 6]. The use of
such ‘non-parametric’ algorithms is a reactionary re-
sponse to the difficulties of calibrating and de-trending
time series observations when the instrument response
function is not known at the precision of the sci-
ence signal to be extracted. In [5] and [6], we have
demonstrated independent component analysis (ICA)

as novel de-correlation strategy for exoplanetary time
series. ICA [3] belongs to the class of blind-source
separation (BSS) algorithms, which attempt to de-
correlate an observed mixture of signals into its indi-
vidual source components without prior knowledge of
the original signals nor the way they were mixed to-
gether. In this conference and [7], I will demonstrate a
marked improvement over previous methods employ-
ing a sparse coding scheme for blind-source separation
problems.

2. Using sparsity to break degen-
eracies

Previous blind-source separation algorithms were lim-
ited by two major factors: 1) the amount of Gaus-
sian noise in the data, and 2) a sign and amplitude
ambiguity of the de-correlated signals. For high sig-
nal to noise (S/N) observations, these limitations were
circumvented by linearly regressing the de-correlated
signals to the lightcurve’s out of transit data to fit for
the missing amplitude information. However for very
low S/N data this methodology proves difficult. Here
we present a novel approach featuring the introduction
of sparse calibration signals in multi-resolution or-
thogonal wavelet space. In wavelet space, it becomes
possible to 1) suppress Gaussian noise by selectively
filtering for it and 2) to introduce artificial, time and
frequency localised calibrator impulses which can be
shown not to impact the original observed data. These
calibrator pulses allow us to break the main degenera-
cies usually encountered in blind-source separation al-
gorithms and to open up such techniques to a plethora
of very low S/N observations.

3. Low Signal-to-noise Data

At this conference and in [7] I demonstrate this highly
versatile and non-parametric machine learning algo-
rithm using simulations and very low S/N Spitzer/IRS
spectra. Thanks to the now absolute calibration of the
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Figure 1: Flowchart of the ACICA algorithm. Begin-
ning with the raw observed data, it is transformed into
orthogonal wavelet space to which sparse calibrator
impulses are added. The ICA blind-source detrend-
ing is then performed in wavelet space and the de-
trended signals calibrated with the retrieved calibra-
tor impulses. Curved arrows represent previous algo-
rithms without wavelet support.

retrieved de-correlated signals, it is possible to system-
atically study the systematic (may these be stellar or
instrumental) trends encountered in an observation of
an exoplanetary atmosphere.

4. Summary and Conclusions

In this conference, I will discuss and present recent
advances in the use of non-supervised machine learn-
ing algorithms in the de-trending of exoplanetary spec-
troscopic data. Given recent controversies in the use
of parametric de-trending techniques, it is important
to pursue non-parametric avenues that allow for an
optimal correction of the data without human biases.
ACICA allows us to de-trend otherwise in- accessible
data sets non-parametrically. We demonstrated this us-
ing simulations and archival Spitzer/IRS data. It fur-
thermore offers us an un- precedented and unique in-
sight into the morphol- ogy of a data set by allowing
us to directly map out temporal/wavelength dependent
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Figure 2: Simulation of a noisy time series observa-
tion. From top: simulated observed data, de-trended
lightcurve component, systematic instrument noise
components, bottom: wavelet calibration signal im-
pulse. Signals are offset for clarity.

variations of instrumental or stellar noise in the data
set. Together, these attributes make the algorithm pro-
posed here a highly versatile and powerful tool for ex-
oplanetary time series analysis.
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