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Abstract
Bayesian inversion is a powerful approach for the 
inversion of the non-linear Hapke’s model in order to 
estimate surface photometric parameters. This 
technique is based on the concept of the state of 
information, characterized by a probability density 
function (PDF).  The prior information on model 
parameters combined with prior information on  
observations are fused to infer the solution. The final 
state of information is numerically sampled using a 
Monte Carlo Markov Chain, allowing rigorous 
estimation of uncertainties.

1. Introduction
Fast and accurate direct models describing the 
interaction of light with dense granular medium (e.g. 
planetary surface) are required to derive 
compositional and structural informations (i.e. grain 
size, shape, internal heterogeneity, surface 
compact ion ,  roughness) f rom ref lec tance 
measurements of the planetary surface (Bidirectional 
Reflectance Function or BRF). Due to its fast 
computing, Hapke’s model [1] appears the best 
candidate to analyze surface BRF. We implemented 
and tested a Bayesian inversion to analyze synthetic 
datasets and the 11 multi-angle CRISM data of Mars 
[2] after aerosols correction using the Multi-angle 
approach for retrieval of surface reflectance  from 
CRISM observations technique (MARS-ReCO) [3].

2. Hapke’s photometric model
The Hapke’s model [1] is widely used in the 
planetary community depending on 6 parameters: 
single scattering albedo ω, macroscopic roughness θ-
bar, particle phase function which is described by a 
2-term Henyey-Greenstein function that includes the 
asymmetric parameter b and the backscattering 
fraction c, and opposition effect described by its 
width h and magnitude B0.

3. Bayesian inversion framework
Inversion problems do not have a unique solution if 
the direct model is nonlinear as does the Hapke’s 
model. Tarantola and Valette [4] proposed to solve 
inverse problems in a general nonlinear case based 
on the concept of the state of information using 
Baye’s theorem. The key points of the Bayesian 
inversion framework are:

• Prior information on the model.  The prior 
information on model parameter in the parameter 
space p(m) is independent with the data and 
corresponds in our case in all physically possible 
values.  For all 6 parameters, we consider a uniform 
PDF on an interval that insures their physical 
relevance (from 0 to 1 for ω, b, c,  B0 and h and 
from 0° to 45° for θ-bar). 
• Prior information on the data. The prior 
information on data in the observation space p(d) is 
assumed to be a Gaussian PDF. Each observation 
value at one geometry i, is accompanied with its 
standard deviation σi assumed to be independent on 
the other geometries. The Gaussian PDF is 
described by a diagonal covariance matrix C with 
elements σ12, ...,  σN2, N is the number of geometries. 
For Mars, this information is provided by MARS-
ReCO on real CRISM observation [3]. 
• Posterior PDF of each parameter. Inversion 
problems correspond to the particular case where 
information from the data space is translated into 
the model space.  Assuming an uniform null 
information state,  the posterior PDF P(m) in the 
model space is [4]:  P(m)=k.p(m).L(m),  (1)
where k is an appropriate normalization constant,  
L(m) is the «likelihood function» which measures 
the fit between observed and modeled data and  We 
suppose a Gaussian uncertainties described by a 
covariance matrix C, then: 
     L(m)=k.exp[-0.5.t(dmod-dmes).C-1.(dmod-dmes)]] (2)
• Sampling of solutions.  It is not possible to 
analytically describe the posterior PDF because the 
Hapke’s model is nonlinear. Consequently, it is 
sampled by randomly generate a large collection of 
model parameters according the posterior PDF and 
the relative likelihood (Monte Carlo Markov Chain) 
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[6]. The best trade-off between computation time 
and accuracy is a burn-in phase of 500 runs.  The 
next 500 runs are used to create the posterior PDF. 

4. Sensitivity study
The capabilities of the proposed inversion strategy 
have been tested on synthetic data that mimic 
reflectance measurements at different viewing 
geometries. A realistic synthetic data set is simulated 
using in situ photometric parameters of soils on Mars 
estimated from reflectances measured by the Pancam 
instrument on-board Mars Exploration Rover (MER) 
[5] at ∼750 nm. The synthetic data is simulated: (case 
1) for a reduced geometric configurations close to the 
CRISM acquisition: 11 multi-angle hyperspectral 
images (constant incidence angle, 11 different 
emission angles (±60°) and 2 azimuthal angles) [2], 
and (case 2) for varied and diverse geometric 
configurations (varied incidence, same emergence 
and azimuth angles).  For the case 1, the parameter ω 
has a Gaussian distribution with a lowest standard 
deviation. It is the best-constrained parameter in 
photometric modeling. The parameters c, and θ-bar 
are less constrained than the parameter ω 
(asymmetric, bimodal distributions and high standard 
deviations). The parameter b has no solution 
(uniform PDF close to the prior PDF). The reason is 
that for a single CRISM observation, the geometries 
are not varied enough to well-constrained these 3 
parameters. For the case 2, results show that all the 
parameters have a constrained solution and the a 
posteriori PDF are Gaussian-like distributions with 
lower standard deviation. The mean of each 
photometric parameters are close to the initial 
parameters. This study shows the importance to 
improve the number of geometries, by combining 
more overlapping strips at different times along the 

mission to complete as possible the whole phase 
function. 

5. Conclusions
Bayesian inversion is a useful approach to invert the 
non-linear Hapke’s model for the estimation of 
surface photometric parameters. Thanks to Bayesian 
inversion, the shape of the a posteriori PDF is known 
and will inform us whether the BRF sampling is 
sufficient to estimate accurate photometric 
parameters. From our synthetic tests, a lack of the 
BRF sampling  produce a uniform non-constrained 
PDF or multimodal PDF. An application of this 
method on CRISM multi-angle observations at MER 
landing sites is presented by J. Fernando et al. [7,8]. 
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Figure 1: A posteriori PDF and mean 
and standard deviation of the 

parameters ω, b, c, θ-bar for the case 1 
in blue line (inc~60°, eme=from -60° 

to 0 and from 0 to +60°, 
phi=[60;120°], geometries=11),  and 

for the case 2 in red line (inc=[30-80], 
Δ=10° eme=[0-70°], Δ=20° 

phi=[60;120°], geometries=60)


