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Abstract

Bayesian inversion is a powerful approach for the
inversion of the non-linear Hapke’s model in order to
estimate surface photometric parameters. This
technique is based on the concept of the state of
information, characterized by a probability density
function (PDF). The prior information on model
parameters combined with prior information on
observations are fused to infer the solution. The final
state of information is numerically sampled using a
Monte Carlo Markov Chain, allowing rigorous
estimation of uncertainties.

1. Introduction

Fast and accurate direct models describing the
interaction of light with dense granular medium (e.g.
planetary surface) are required to derive
compositional and structural informations (i.e. grain
size, shape, internal heterogeneity, surface
compaction, roughness) from reflectance
measurements of the planetary surface (Bidirectional
Reflectance Function or BRF). Due to its fast
computing, Hapke’s model [1] appears the best
candidate to analyze surface BRF. We implemented
and tested a Bayesian inversion to analyze synthetic
datasets and the 11 multi-angle CRISM data of Mars
[2] after aerosols correction using the Multi-angle
approach for retrieval of surface reflectance from
CRISM observations technique (MARS-ReCO) [3].

2. Hapke’s photometric model

The Hapke’s model [1] is widely used in the
planetary community depending on 6 parameters:
single scattering albedo w, macroscopic roughness 6-
bar, particle phase function which is described by a
2-term Henyey-Greenstein function that includes the
asymmetric parameter b and the backscattering
fraction ¢, and opposition effect described by its
width 4 and magnitude By.

3. Bayesian inversion framework

Inversion problems do not have a unique solution if
the direct model is nonlinear as does the Hapke’s
model. Tarantola and Valette [4] proposed to solve
inverse problems in a general nonlinear case based
on the concept of the state of information using
Baye’s theorem. The key points of the Bayesian
inversion framework are:
» Prior information on the model. The prior
information on model parameter in the parameter
space p(m) is independent with the data and
corresponds in our case in all physically possible
values. For all 6 parameters, we consider a uniform
PDF on an interval that insures their physical
relevance (from 0 to 1 for w, b, ¢, Bo and & and
from 0° to 45° for 6-bar).
* Prior information on the data. The prior
information on data in the observation space p(d) is
assumed to be a Gaussian PDF. Each observation
value at one geometry i, is accompanied with its
standard deviation o; assumed to be independent on
the other geometries. The Gaussian PDF is
described by a diagonal covariance matrix C with
elements 612, ..., on?, N is the number of geometries.
For Mars, this information is provided by MARS-
ReCO on real CRISM observation [3].
* Posterior PDF of each parameter. Inversion
problems correspond to the particular case where
information from the data space is translated into
the model space. Assuming an uniform null
information state, the posterior PDF P(m) in the
model space is [4]: P(m)=k.p(m).L(m), (1)
where k is an appropriate normalization constant,
L(m) is the «likelihood function» which measures
the fit between observed and modeled data and We
suppose a Gaussian uncertainties described by a
covariance matrix C, then:
L(m)=k.exp[-0.5. (dmod-dmes).C'.(dmod-dmes)]] (2)
* Sampling of solutions. It is not possible to
analytically describe the posterior PDF because the
Hapke’s model is nonlinear. Consequently, it is
sampled by randomly generate a large collection of
model parameters according the posterior PDF and
the relative likelihood (Monte Carlo Markov Chain)



[6]. The best trade-off between computation time
and accuracy is a burn-in phase of 500 runs. The
next 500 runs are used to create the posterior PDF.

4. Sensitivity study

The capabilities of the proposed inversion strategy
have been tested on synthetic data that mimic
reflectance measurements at different viewing
geometries. A realistic synthetic data set is simulated
using in situ photometric parameters of soils on Mars
estimated from reflectances measured by the Pancam
instrument on-board Mars Exploration Rover (MER)
[5] at ~750 nm. The synthetic data is simulated: (case
1) for a reduced geometric configurations close to the
CRISM acquisition: 11 multi-angle hyperspectral
images (constant incidence angle, 11 different
emission angles (+60°) and 2 azimuthal angles) [2],
and (case 2) for varied and diverse geometric
configurations (varied incidence, same emergence
and azimuth angles). For the case 1, the parameter
has a Gaussian distribution with a lowest standard
deviation. It is the best-constrained parameter in
photometric modeling. The parameters ¢, and 8-bar
are less constrained than the parameter o
(asymmetric, bimodal distributions and high standard
deviations). The parameter b has no solution
(uniform PDF close to the prior PDF). The reason is
that for a single CRISM observation, the geometries
are not varied enough to well-constrained these 3
parameters. For the case 2, results show that all the
parameters have a constrained solution and the a
posteriori PDF are Gaussian-like distributions with
lower standard deviation. The mean of each
photometric parameters are close to the initial
parameters. This study shows the importance to
improve the number of geometries, by combining
more overlapping strips at different times along the

mission to complete as possible the whole phase
function.

5. Conclusions

Bayesian inversion is a useful approach to invert the
non-linear Hapke’s model for the estimation of
surface photometric parameters. Thanks to Bayesian
inversion, the shape of the a posteriori PDF is known
and will inform us whether the BRF sampling is
sufficient to estimate accurate photometric
parameters. From our synthetic tests, a lack of the
BRF sampling produce a uniform non-constrained
PDF or multimodal PDF. An application of this
method on CRISM multi-angle observations at MER
landing sites is presented by J. Fernando et al. [7,8].
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Figure 1: A posteriori PDF and mean
and standard deviation of the
parameters w, b, ¢, 6-bar for the case 1
in blue line (inc~60°, eme=from -60°

oo L

N N B~ A
00 0.6 0.8 0.2 0.4

o to 0 and from 0 to +60°,

r ¢=0.715 Sol 013, soil
[ unit [6]

F ¢=0.58+0.22 (c1)
E ¢=0.6620.16 (c2)

T TR
PDF of 6-bar

0.3

6-bar=15 Sol 013, soil §
unit [6] E|
6-bar=13.6+6.4 (c1) 3

02 6-bar=16.4%2 (c2)

phi=[60;120°], geometries=11), and
for the case 2 in red line (inc=[30-80],
A=10° eme=[0-70°], A=20°
phi=[60;120°], geometries=60)

30 20 02

20

L -
0.6

L -
0.8



