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Abstract

Detecting minerals on a very large hyperspectral
dataset (> To) is a difficult task that may be solved
using fast linear unmixing techniques under
contraints of positivity and sum-to-one. We test
different algorithms and different reference database
on synthetic data simulating the observation. We
show that new algorithms can handle linearly
dependent spectra in the database as expected
theoretically. This possibility offers a new
opportunity to detect minerals in very hard condition
such planetary surfaces.

1. Introduction

In remote sensing hyperspectral imaging, a set of
images is recorded at various spectral bands by the
sensor that measures the solar light reflected and
scattered back from the surface and from the
atmosphere. We modeled this transfer as a linear
mixture of the scene component spectra
(endmembers) and additional spectra. Using matrix
notations, one can write:

X ~ AS (1)

where each row of X contains the p-th pixel spectrum
and matrix S contains the endmember spectra. In this
model, the weight A of each component spectrum S
is related to its abundance in the surface area
corresponding to the underlying pixel. Supervised
linear unmixing problem consists of estimating
matrix A knowing X and S, in contrary to
unsupervised unmixing that consists of estimating
matrix A and S, knowing only X [1]. A first hard
constraint is the non-negativity of the elements of A
since they correspond to abundances of the surface
components:

Ap>0, Vp,r 2

A second constraint that may be imposed is the sum-

to-one (additivity) constraint on the abundances that
should sum to unity for each pixel p:

Z. Ay~ Yp 3)

Thanks to both constraints (2) and (3), the problem is
not undetermined using some linearly mixed spectra
S. We tested here the behavior of two algorithms to
fit the continuum using this possibility.

2. Methods

On order to estimate the detection limit in a realistic
but very hard condition, we created a synthetic
dataset made of 1000 spectra: 90% of flat spectra and
10% of a random binary mixture. We then alterate
these spectra by using a radiative transfert model to
simulate the reflectance observed at the spaceraft
using the aerosols optical properties from Vincendon
et al. [2]. The aerosols content is defined by the
Acerosols Optical Thickness (AOT). Then we add the
noise simulating the instrument noise (from OMEGA
dark current).

The FCLS method solves the unmixing problem
under non-negativity and sum-to-one constraints [3].
Since no closed form expression of the optimal
abundance vector can be derived under these two
constraints, an iterative scheme is developed. The
non-negativity constraint is classically handled by
introducing the Lagrange function associated with
the criterion to be optimized. The sum-to-one
constraint is considered as an additional
measurement equation leading to a new cost
function. This method was previously tested to detect
ices and liquid water on Mars [4]. An alternative
approach, called IP-FCLS was recently developed [5]
using primal-dual interior point optimization
approach.

For both algorithms, we tested different reference
spectral database S, including several linearly
dependent data.



3. Results

Figure 1 presents the collection of 32 reference
spectra from laboratory measurements and synthetic
data [6] that from our expertise is the best
compromise to fit the data using FCLS. It
corresponds to the maximum linearly dependent
spectra allowed in the algorithm. If one adds the
positive slope for instance, the matrix inversion of
the FCLS algorithm fails.

Figure 1: Reference database of 32 spectra, including
two flat at 0.01 and at 1.0 and the negative slope.

This behavior is not present for the IP-FCLS
algorithm since no matrix inversion is involved. One
can add many linearly dependant spectra, opening the
possibility to better fit the continuum and tackle the
non-linearity due to complex radiative transfer in the
surface and atmosphere. In practice, the most
reasonable additional artificial spectra are a basis of
sine and cosine at very large wavelength in order to
fit the general shape of the continuum (4x and 2x
period in order to prevent from specific absorption
bands of some minerals, like pyroxenes).

In the case of the slope, figure 2 shows that more
than 80% (false detection < 5%) of the minerals can
be detected with our methods with a decreasing
efficiency with increasing aerosols optical thickness.
When, the raw spectra are directly used, the detection
limits is below 60% (false detection > 30 %),
showing clearly the usefulness of the additional
spectra. The dependance on aot is very low for AOT
<0.1 but the detection rate is still 70% for AOT=1.

4. Summary and conclusion

We showed that recent algorithms of linear unmixing
including positivity and sum-to-one constraints could

provide new possibility to fast fit the continuum in
addition to “spectral abundance” estimation.
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Figure 2: Positive detection rate (circle) and false
detection rates (square) with optimized threshold as a
function of AOT for IPLS. For each algorithm, the
positive/false detection rates are computed using 32
endmember spectra only (no slope), or 44
endmember spectra including additional spectra
(slope). IPLS has an option of sum-lower-than-one
(slo) or sum-to-one (sto). The case without aerosols
is plotted at AOT=10"".
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