

Silica nanoparticles in E ring ice grains as an indicator for hydrothermal activities at Enceladus

Frank Postberg (1,2), Hsiang-Wen Hsu (3) and Yasuhito Sekine (4,5).

¹Institut für Raumfahrtssysteme, Stuttgart University, Germany; ²Institut für Geowissenschaften, Heidelberg University, Germany; ³LASP, University of Colorado, Boulder, USA, ⁴Dept. of Complexity Sci. & Engr., University of Tokyo, Japan
⁵PEL, Japan Agency for Marine-Earth Sci. & Tech, Japan
Postberg@irs.uni-stuttgart.de

Abstract

Since 2004 the Cosmic Dust Analyser (CDA) on board the Cassini spacecraft detects nano-meter sized dust particles, so called stream particles, in the Saturnian system. Recently it has been shown that they are released from E ring ice grains in which they were previously embedded [1]. As a consequence the nanograins must have been generated at Saturns active moon Enceladus which feeds the E ring by its spectacular jets of vapour and ice grains. Liquid water below the moons icy crust is known to be the dominant source of these jets [2, 3].

New results from CDA presented here indicate that stream particles actually are nano-silica grains. The most prominent geological process which produces nano-phase silica are hydrothermal rock-water interactions. This process has recently been intensely studied for hydrothermal systems on Earth [e.g. 4, 5]. The measured concentration, composition and size range observed at in the Saturnian system precisely matches a hydrothermal synthesis origin. Thus, we propose nano-colloidal silica to be present at mMol concentrations in Enceladus' subsurface waters.

We were able to reproduce the proposed hydrothermal serpentinisation processes in a geochemical long term experiment in the laboratory. As there are no alternative formation scenarios which are in agreement with the CDA observations our results indicate ongoing rock-water interactions inside Enceladus at temperatures clearly exceeding 100°C. We discuss implications for Enceladus geochemistry, like salinity, possible ranges of temperature and pH, as well as the mineral composition of the Enceladian rock core.

References

- [1] Hsu, H.-W., Postberg, F., Kempf, S., Trieloff, M., Burton, M., Roy, M., Moragas-Klostermeyer, G., Srama, R. Stream Particles as the Probe of the Dust–Plasma–Magnetosphere Interaction at Saturn, *J. of Geophys. Res.*, Vol. **116**, Issue A9, CiteID A09215 (2011).
- [2] Postberg, F. *et al.* Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. *Nature* **459**, 1098–1101 (2009).
- [3] Postberg, F., Schmidt, J., Hillier, J., Kempf, S., & Srama, R. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. *Nature* **474**, 620–622 (2011).
- [4] Icopini, G.A., Brantley, S.L., Heany, P.J. Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25°C. *Geochimica et Cosmochimica Acta*, Vol. **69**, No. 2, pp. 293–303, (2005).
- [5] Tobler, D.J., Shaw, S., Benning, L.G., Quantification of initial steps of nucleation and growth of silica nanoparticles: An in-situ SAXS and DLS study. *Geochimica et Cosmochimica Acta* **73**, pp. 5377–5393, (2009).