EPSC Abstracts Vol. 8, EPSC2013-799-1, 2013 European Planetary Science Congress 2013 © Author(s) 2013

Destruction of organics on Mars by oxychlorines: Evidence from Phoenix, Curiosity, and EETA79001

Samuel P. Kounaves (1), Brandi L. Carrier (1), Glen D. O'Neil (1), Shannon T. Stroble (2), and Mark W. Claire (3,4) (1) Tufts University, Medford, MA, USA, (samuel.kounaves@tufts.edu), (2) Franklin Pierce University, Rindge, NH, USA, (3) University of St. Andrews, St. Andrews, UK, (4) Blue Marble Space Institute of Science, Seattle, WA, USA.

Abstract

The Phoenix lander measured 0.6 wt% perchlorate (ClO₄) in the martian soil. The Curiosity rover has also found CH₃Cl, CH₂Cl₂ and ClO₄. New analyses of martian meteorite EETA79001 show the presence of ClO₄, and chlorite (ClO₃). The ubiquity of ClO₄ and ClO₃ points to the global presence of highly oxidizing oxychlorines (ClO_x) on Mars. Produced both by oxidation of Cl and radiolysis of ClO₄, the oxychlorines are very highly destructive to organics. Their global presence has broad implications for the presence and detection of organics and life on Mars.

1. Introduction

In 2008 the Phoenix Mars lander's wet chemistry lab (WCL) measured ~0.6 wt% perchlorate (ClO₄) in three soil samples [1,2]. This led to suggestions that detection of chloromethanes (CH₃Cl, CH₂Cl₂) by the Viking GC-MS was a result of ClO₄ [3,4]. Initial results from SAM on NASA's Curiosity rover also indicate presence of chloromethanes and ClO₄ [5,6]. These discoveries suggest that ClO₄ is likely global on Mars and that oxychlorines (ClO_x) may be responsible for the oxidation of organics.

The EETA79001 meteorite, from Antarctica is one of the largest martian meteorites found. It is composed of a primary basaltic host of feldspathic pyroxenite with olivine megacrysts and a minor component of pyroxene (lithology-A); a coursergrained basalt free of olivine megacrysts (lithology-B); and several shock-melted glass pockets and veins (lithology-C). Present in several pockets in lithology-A, is a large inclusion of white material. There have been few analyses focused on the soluble ionic species, though some have shown the presence of NO₃, none have analysed for ClO₄. EETA79001 has never been analysed for any soluble salts.

We have recently performed ion chromatographic (IC) and N/O stable isotope analyses of EETA79001 that show the presence of ClO₄, ClO₃, and NO₃,

with isotopic ratios are different from adjacent ice. The location and concentration of the salts within EETA79001 are difficult to reconcile with terrestrial contamination. The evidence is consistent with a martian origin for the ClO_x^- and NO_3^- in EETA79001.

2. Results

The EETA79001 sample consisted of sawdust from a cross-cut that included a ~1.5 cm diameter inclusion and a ~1 cm diameter deposit of white granular material, both in the center ~8 cm from the nearest surface. Analyses by IC found ~ 600 ppb ClO_4 , 1.4 ppm ClO_3 , and 16 ppm NO_3 . Even though rocks on Antarctic ice can absorb enough sunlight and form water around their base, it seems unlikely such a highly soluble salts could accumulate in the interior of EETA79001 that landed on Earth only 12 kyrs ago. Similar levels of ClO_4 found in nearby Antarctic University Valley soils are estimated to require accumulation periods of 1-8 Myr [7]. No significant ClO_4 was detected in nearby ice similar to that in which EETA79001 would have rested in for $\leq 12 \text{kyrs}$.

Evidence for the martian origin of the ClO_x^- and NO_3^- in EETA79001 is provided by the NO_3^- isotopic ratios in combination with the ClO_4^- , NO_3^- , and Cl^- concentration ratios. For example, EETA79001 $NO_3^ \delta^{15}N$ values are similar to those for MDV soils while $\delta^{18}O$ is depleted by ~20‰ [8], contrary to what is expected from contamination by the ice EETA79001 was transported through and with $\delta^{15}N$ in the range of 100-350‰. Isotopic analysis of Miller Range blue ice, which is similar to the EET site ice, gave $\delta^{15}N = +103\%$. It's difficult to reconcile NO_3^- in EETA7901 of $\delta^{15}N = -10\%$ with nearby ice of $\delta^{15}N = +103\%$.

Even though the present martian atmosphere has $\delta^{15}N \approx 625\%$ [9], NO_3^- in EETA79001 probably did not originate from current atmospheric N_2 , but from that during the first 1-2 Gyr before ¹⁴N was depleted. Recently, the Tissint meteorite gave N=12.7ppm with $\delta^{15}N = -4.5\%$ [9]. Since Tissint was rapidly collected, contamination is unlikely. The similarity of $\delta^{15}N$ for

both Tissint and EETA79001 is an indicator that the NO₃ in EETA79001 is most likely of martian origin.

3. Discussion and Conclusions

Based on terrestrial observations/models, production of ClO₄ on Mars occurs either photochemically in the upper atmosphere from volcanic HCl, or through gas-phase reactions of Cl containing aerosols with O₃ or H₂O₂, and deposited as perchloric acid (HClO₄). However, since current active chlorine chemistry is limited (HCl < 0.6 ppb), production of ClO₄ was probably confined to past volcanic activity. Recent landed missions have identified ClO₄ to be widespread on the martian surface, and Phoenix showed ClO₄ to be homogeneous within the top 10 cm of the soil. Thus, either ClO₄ is a remnant from early volcanic activity and globally distributed by dust storms, or is continually produced by oxidation of mineral chlorides, or both. The former would place constraints on its exposure to liquid water, since its solubility would relocate and concentrate it. The later production of ClO₄ by oxidation of mineral chlorides, would explain its ubiquitous presence today. Such processes have been shown to be possible [11,12]. In any of the above mechanisms, the reactions will generate hypochlorite (ClO-), chlorite (ClO₂), and chlorate (ClO₃). Confirmation of ClO₃ by Curiosity and in EETA79001 are indicators that oxychlorines are present in the martian In addition, ClO₄ can also contribute to production of ClO_x by radiolytic decomposition [13]. The ClO_x species are highly reactive and would destroy organics in the soil, with only refractory or well protected organics surviving.

Figure 1 shows possible processes and pathways for the production of ClO_4 and accompanying intermediaries. Highly oxidizing species such as ClO and ClO_2 can be generated from stable Cl-minerals by action of UV and from ClO_4 -minerals by action of cosmic γ and x-rays. This suggests that oxychlorines are in effect at "equilibrium" and always present. Thus, their ubiquity has broad implications for the presence and detection of organics and life on Mars.

Acknowledgements

Funding to S.K. by NASA Phoenix and EXOB Grant NNX10AT27G. M. Claire acknowledges NAI DDF Award "Perchlorate, Water, and Life". We also thank J. K. Böhlke for isotopic analyses, N. Sturchio and K. McElhoney, for valuable review and comments.

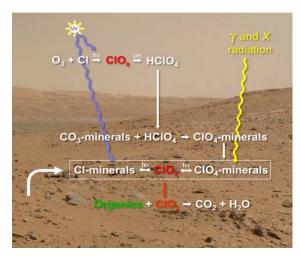


Figure 1: Processes and pathways for the production of perchlorate and accompanying intermediary oxychlorines.

References

[1] Kounaves, S., et al.: Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results, J. Geophys. Res. 115, E00E10,2010. [2] Hecht, M. H., et al.: The detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325, 64-67, 2009. [3] Biemann, K., et al.: Comment on "Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars" by Navarro-González, R. et al.: J. Geophys. Res. 116, E12001, 2011. [4] Navarro-González, R., et al.: Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars, J. Geophys. Res. 115, E12010, 2010. [5] Glavin, D., et al.: Investigating the origin of chlorohydrocarbons detected by the Sample Analysis at Mars (SAM) instrument at Rocknest. LPSC 44, USA, Abs-1229, 2013. [6] Archer, P., et al.: Possible detection of perchlorates by evolved gas analysis of Rocknest soils: global implications, LPSC 44, USA, Abs-2168, 2013. [7] Kounaves, S., et al.: Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications, Environ. Sci. Technol. 44, 2360-64, 2010. [8] Michalski, G., et al.: Isotopic composition of Antarctic Dry Valley nitrate: Implications for NOy sources and cycling in Antarctica, Geophys. Res. Lett. 32, L13817, 2005. [9] Aoudjehane, H. et al.: Tissint Martian Meteorite: A Fresh Look at the Interior, Surface, and Atmosphere of Mars, Science 338, 785-88, 2012. [10] Catling, D. C., et al.: Atmospheric origins of perchlorate on Mars and in the Atacama. J. Geophys. Res. 115, E00E11, 2010. [11] Schuttlefield, J., et al.: Photooxidation of chloride by oxide minerals: Implications for perchlorate on Mars. J. Am. Chem. Soc. 133, 17521-23, 2012. [12] Kang, N., et al.: Characteristics of ClO₄ formation via photo-dissociation of aqueous chlorite. Environ. Chem. 6, 53-59, 2009. [13] Quinn, R. et al.: The radiolytic decomposition of soil perchlorates on Mars. LPSC 42, USA, Abs-2003, 2012.