

Variations in Venus' Cloud Top SO₂ and SO Gas Density with Latitude and Time of Day

Kandis-Lea Jessup (1,2), Mills, F. (2), Marcq, E. (3), Berteaux J-L. (3), Roman, T. (4), Yung, Y. (5)
(1) Southwest Research Institute (jessup@boulder.swri.edu), (2) Australian National University, (3) LATMOS, France, (4) Space Telescope Science Institute, (5) California Institute of Technology

Abstract

1. Introduction: Motivation

Venus' upper atmospheric H₂SO₄ clouds are formed from SO₂ gas via the sulfur-oxidation cycle, beginning with SO₂ photolysis; followed by the formation of SO₃ via photochemical SO₂ oxidation, which then reacts with H₂O forming H₂SO₄. Thus, photochemical processing of SO₂ is intimately linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. At the same time, detailed thermochemical modeling of Venus' key atmospheric species suggests that the sulfur dioxide in Venus' atmosphere most likely originates from volcanic outgassing [1], though volcanic activity has yet to be directly observed. The exchange of SO₂ from below the cloud deck to above the clouds is not fully understood, but undoubtedly involves convection transport [2, 3] and may also include direct volcanic injection of the SO₂ gas [4]. Consequently, observations of sulfur oxides (SO₂, SO, OCS, and H₂SO₄) in Venus' mesosphere are of great interest because they provide important insight into the ongoing chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism.

2. Data description

In order to establish patterns in the sulfur-oxide photochemical behavior as a function of latitude and time of day 200-300 nm HST/STIS observations were obtained on Dec 28, 2010, Jan 22, 2011 and Jan 27, 2011 that recorded Venus' cloud top (65-75 km) SO₂ and SO gas absorption signatures at 0.3 nm spectral resolution [5]. Using the HST/STIS long slit at 0.1" spatial resolution limb-to-limb coverage of Venus was possible, however on each date only 12-18" of daylight was observable on Venus (Fig 1). For our analysis we binned the data spatially along the

slit every 6 pixels, so that a total of 56 spectra were produced per exposure providing continuous limb-to-terminator data on Venus at ~ 150 km resolution. These observations provide a distinct record of the density and spatial distribution of SO and SO₂ gas as a function of latitude, longitude, and time of day.



Figure 1: HST/STIS observation geometry on Dec. 28, 2010 (left) and January 22+27, 2011 (right). The 0.1" slit coverage is indicated in green.

3. Modelling Techniques

Analysis of the HST data is completed using a modification of the radiative transfer model originally developed by [6]. This model relies on the pseudo-spherical SPS-DISORT code to calculate the transfer of radiation through a non-isothermal atmosphere as a function of the optical depth as a function of wavelength, altitude and solar zenith angle. For the analysis of the HST data we have updated the [6] model to include the temperature-dependence of the SO₂ absorption cross-section based on the most recent and best available high-spectral resolution cross-section data [7-10], and the best available SO cross-section data.

The modified RT model replicates the 200-300 nm HST Venus spectra based on the definition of 6 key elements: the atmospheric pressure and temperature profiles; the Rayleigh cross-sections of key gas constituents including: N₂ and CO₂; the gas absorption cross-section of the key gas absorbers in

the atmosphere including CO₂, SO, and SO₂; the bimodal aerosol size distribution in the atmosphere; the vertical profile of the aerosols, and the aerosol scattering extinction coefficients assuming Mie Theory. We constrain the specific SO and SO₂ mixing ratios per observed latitude and longitude by modifying the vertical SO and SO₂ gas density profiles and the aerosol profile.

4. Results Summary

Our analysis indicates that:

- i) an SO₂ abundance of \sim 10-350 ppb was retrieved, consistent with previous Venus Express SPICAV observations made at $\pm 25^\circ$ latitude [6,11]
- ii) similar to the SPICAV observations, the observed SO₂ gas density decreased as the latitude increased from 20 S towards 20 N.
- iii) the observed SO₂ gas density decreased with local time from the morning terminator towards noon, as expected for a gas density controlled by photochemical destruction;
- iv) variation in the observed SO gas density per latitude paralleled that of the SO₂ gas. This indicates that the latitudinal distribution of the SO gas density was *not solely* controlled by SO₂ photolysis, since the opposite trend would be expected.

These results lend credence to recent speculations by [2-3,11-12] that the gas density variability and distribution is determined by a balance of the temperature driven convection at low latitudes, the depletion of SO₂ gas at high latitudes due to advection powered by Hadley cell circulation, and the relative strength of SO₂ photolysis as a function of time of day and latitude. Validation of these speculations, requires on-going systematic quantification of changes in the SO₂, SO, aerosol, convective flux as a function of latitude and time of day coordinated and co-located with measurements of the cloud properties (including altitude and wind speed), on a day to day basis.

Acknowledgements

Funding for this research is provided by the NASA Early Careers Fellowship Program, NASA Planetary Atmospheres Program, and the Space Telescope Science Institute.

References

- [1] Fegley, B., et al.: *Geochemistry of surface-atmosphere interactions on Venus*, in *Venus II*, S.W. Bougher, D.M. Hunten, and R.J. Phillips, Editors. 1997, The University of Arizona Press: Tucson. pp. 591-636.
- [2] Krasnopolsky 2012, V.A.: A photochemical Model for the Venus Atmosphere at 47-112 km. *Icarus*, Vol. 218, pp. 230-246, 2012
- [3] Marcq, E., et al.: Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere. *Nature Geoscience*, Vol. 6, pp. 25-28, 2013
- [4] Esposito, L.W.: Sulfur dioxide – Episodic injection shows evidence for active Venus volcanism. *Science*, Vol. 223, 1072–1074, 1984
- [5] Jessup, K. L., et al.,: Coordinated HST, Venus Express, and Venus Climate Orbiter Observations of Venus, NASA program 12433, Venus Exploration Assessment Group, 11–13 November, 2012, Washington, D. C., USA, 2012.
- [6] Marcq, E., et al.: An investigation of the SO₂ content of the venusian mesosphere using SPICAV-UV in nadir mode. *Icarus*, Vol. 211, pp. 58–69, 2011
- [7] Stark, G., et al.: High-resolution photoabsorption cross-section measurements of SO₂ at 295 K between 198 and 220 nm. *J. of Geophys. Res.*, Vol. 104, pp. 16585-16590, 1999.
- [8] Rufus, J., et al.: High-resolution photoabsorption cross section measurements of SO₂, 2: 220 to 325 nm at 295 K, *J. of Geophys. Res.*, Vol.108, pp. 5-1, CiteID 5011, DOI 10.1029/2002JE00193, 2003
- [9] Rufus, J., et al.: High-resolution photoabsorption cross-section measurements of SO₂ at 160 K between 199 and 220 nm, *J. of Geophys. Res.*, Vol. 114, DOI: 10.1029/2008JE003319, 2009
- [10] Blackie, D., et al.: High-resolution photoabsorption cross-section measurements of SO₂ at 198 K from 213 to 325 nm, *J. of Geophys. Res.*, Vol. 114, DOI: 10.1029/2010JE003707, 2011.
- [11] Encrenaz, P., et al.: HDO and SO₂ thermal mapping on Venus: evidence for strong SO₂ variability. *Astron. Astrophys.*, Vol. 543: DOI 10.051/0004-6361/201219419, 2012.
- [12] Saánchez-Lavega, A., et al.: Variable winds on Venus mapped in three dimensions, *Geophys. Res. Lett.*, Vol. 35, L13204, DOI 10.1029/ 2008GL033817, 2008.

