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Abstract

As an alternative to classical deterministic gradient
searches, evolutionary strategies (ES) can be used
to implement technical optimization algorithms for a
wide range of problems. They are universal, unde-
manding, robust, easy to implement, and can be con-
sidered as a compromise between volume and path ori-
entated searches for the optimal solution.

It is demonstrated that ES are applicable to inverse
or boundary value problems: e.g. determination of
gravity field coefficients, or the determination of or-
bital elements from given position vectors.

1. Introduction
In general, evolutionary algorithms comprise the two
branches genetic algorithms [1] and evolution strate-
gies [4], both of which were invented in the late 1960s
and early 1970s. Here we focus solely on ES which
have seen many improvements within the last decades
and can now be regarded as a real alternative to stan-
dard optimization techniques in many areas, especially
in cases where gradient methods like the classical
least-squares algorithm fail.

Compared to other optimization techniques, ES are
easy to adapt to various problems, because one rarely
needs any a priori insight into the mathematical or
physical nature of the optimization task. Once imple-
mented, the same algorithm can be applied to a wide
range of problems without substantial changes. The
only necessary condition for ES to successfully oper-
ate on a given specific problem is the inherent exis-
tence of strong causality, which here means that simi-
lar causes lead to similar results, i.e., there is no (short-
term) chaotic behavior in the underlying system.

In the following sections we present 2 examples for
the application of an ES with covariance matrix adap-
tation (ES-CMA) [2]. Any of the strategy parameters
were chosen empirically here. This could be avoided
by the implementation of a Meta-ES, that eventually
can, in addition to the problem specific unknowns, op-
timize its own strategy parameters automatically.

2. Gravity field determination
The goal is to find spherical harmonic coefficients cnm

and snm up to a given maximum degree nmax and order
mmax, representing an n×m gravity field of a central
body, e.g. Earth. Here we solve for a 4×4 gravity field,
equivalent to a 21-dimensional optimization problem.

Earth’s gravity field directly influences the motion
of an orbiting satellite, so we can treat the latter as
a test mass. In order to determine the coefficients,
several satellite positions (simulated in this study) are
given. We search for an optimal set of spherical har-
monics, leading to calculated positions rc

i . Comparing
them with the simulated vectors rs

i yields deviations
∆ri = rs

i − rc
i . These differences should not exceed a

chosen threshold value.
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Figure 1: Logarithm of the absolute residual values of
the unknowns vs. generation number.

Depending on the norm, the performance index (ob-
jective function, quality criterion) may be defined as
Q =

∑N
i=1 ‖∆ri‖ → min, where N is the number of

given satellite positions. The termination quality was
set to Q∗= 1/1000 mm, and for N = 90 a (1,40)-ES-
CMA was realized. The values in the round bracket
indicate that for each new generation there is 1 parent
creating an offspring of 40 individuals, and only the
(mutated) offspring is subject to selection afterwards.
Figure 1 illustrates the evolution of the unknowns, and
table 1 provides their final values.
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Table 1: Final result of the ES optimization, all values
in 10−10. Digits identical with the original spherical
harmonics (used in the simulation) are in bold print.

n m cnm snm

2 0 −4841695.4834480 -
3 0 +9571.7060002975 -
4 0 +5397.7705833457 -
2 1 −1.8694714700433 +11.954500954474

3 1 +20301.372076698 +2481.3079540691

4 1 −5362.4358305647 −4737.7249759825

2 2 +24392.609849473 −14002.665205972

3 2 +9047.0636114776 −6189.2285463862

4 2 +3506.7012168619 +6625.7136424735

3 3 +7211.4491711647 +14142.039502771

4 3 +9908.6882512345 −2009.8746087090

4 4 −1884.8146556533 +3088.4815006772

3. Satellite orbit from two positions
The goal is to find the solution to a seemingly simple
boundary value problem. Given are position vectors
rA, rB , valid at epochs tA, tB with tB > tA (to fix
the sense of direction for the satellite’s motion), and a
known force field, e.g. a 8×8-gravity field, cf. figure 2.
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Figure 2: Exemplary boundary value problem.

The fundamental task is to transform the original
boundary value problem into an initial value problem,
i.e., search for the corresponding initial velocity vector
vA. Knowing the initial state vector zA := (rA,vA)T ,
and the arc length, i. e., the time of flight tB − tA,
the satellite orbit between A and B can then be deter-
mined via traditional methods. There exist only three
unknowns, namely the cartesian components of vA.

It is absolutely sufficient to be familiar with the
equation of motion of the perturbed two-body prob-
lem and its numerical integration (NI). We do not re-
quire any other theoretical knowledge about celestial

mechanics, e.g. the availability of integrals of mo-
tion. As a simple performance index one can define
Q = ‖∆rB‖ = ‖rB − rNI

B ‖ → min.
Again, the (1,40)-ES-CMA was employed. The ter-

mination quality was set to Q∗ = 1 · 10−10 mm. For
a given numerical example, a solution was found after
145 generations, see figure 3 for the quality plot.
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Figure 3: Quality in km vs. generation number.

4. Summary and Conclusions
Only 2 applications of evolutionary strategies in celes-
tial mechanics were presented here. In future, this op-
timization technique should gain more importance, es-
pecially when it comes to the direct solution of inverse
problems. The ever improving hardware and software
capabilities support this direct approach. The author
plans to use ES for improved asteroid modeling within
the calculation of a new solar system ephemeris [3].
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