

First 3-Way Lunar Radio Phase Ranging and Doppler Experiment in Chang'E-3 Lander Mission

J Ping(1), **Q Meng**(2), **M Wang**(3), **G Tang**(4), **N Jian**(5), **Z Wang**(6), **W Li**(1,7), **C Chen**(2), **M Wang**(1), **Y Lu**(1), **Q Yu**(2), **Y Mao**(2), **C Miao**(2), **Y Lei**(2), **F Shu**(5) and **J Cao**(4)

(1)Lunar and Deep Space Exploration Division, National Astronomical Observatories, CAS, Beijing, China
(jpsping@bao.ac.cn); (2)Institute of Space, South-East University, Nanjing, China; (3)Yunnan Astronomical Observatory, CAS, Kunming, Yunnan, China; (4) Science and Technology on Aerospace Flight Dynamics Laboratory, Beijing Aerospace Command and Control Center, Beijing, China; (5) Research Center for Geo-Astroynamics, Shanghai Astronomical Observatory, CAS, Shanghai, China; (6)Xinjiang Astronomical Observatory, CAS, Urumqi, China; (7)Department of Astronomy, Beijing Normal University, Beijing, China (liwenxiao3443@mail.bnu.edu.cn).

Abstract

Radio science experiments have been involved in all of the Chinese lunar missions with different research objectives. In Chang'E-3 landing mission, a 3-way open loop lunar radio phase ranging and Doppler technique was suggested and tested. This technique is modified and updated from early multi-channel one-way Doppler deep space tracking technique developed for Chinese Mars mission Yinghuo-1. In the 1st preliminary experiments, we obtained 1spis continuous phase ranging data before and after the successful landing period, with a resolution of 0.5 millimeter or better. This method, called Lunar Radio Phase Ranging (LRPR) can be a new space geodetic technique to measure the station position, earth tide and rotation, lunar orbit, tide and libration, by means of independent observation, or to work together with Lunar Laser Ranging. Also, it can be used in future Mars mission.

1. Introduction

The radio tracking data in lunar and planetary missions can be directly applied for scientific investigation[1]. The variations of phase and of amplitude of the radio carrier wave signal linked between the spacecraft and the ground tracking antenna are used to deduce the planetary atmospheric and ionospheric structure, planetary gravity field, mass, ring, ephemeris, and even to test the general relativity. The radio science experiments have been arranged and merged in to most of the lunar and deep space missions. So do the Chang'E lunar missions. In Chang'E-1 mission, the USB radio ranging and Doppler data have been used to improve the lunar

gravity field together with the VLBI data. In Chang'E-2 mission, the link wave changed from S-band to X-band for improved downlink data transferring requirement, and to reduce the ionospheric effect in satellite tracking. DOR tone signals are coherently designed with carrier wave for Delta-DOR VLBI tracking, and an open-loop 3-way Doppler tracking technique was also tested. Chang'E-3 is a lunar surface landing mission. We are using the planetary radio science receiver to measure the distance variation between the tracking station-lander-VLBI site by means of 3 way phase tracking. This LRPR technique can over the disadvantages of the LLR methods: no operating during full moon, new moon, bad site weather period. The high precise ranging data can be used in many research areas.

2. Chang'E-3 mission

After the successful lunar orbiting missions of Chang'E-1/2, China launched the Chang'E-3 lunar landing and rover mission at the end of 2013. Launching mass of the Chang'E-3 is ~3.7 ton, lander mass is ~1.2 ton, rover mass is 120kg with scientific payloads of 20 kg. Some important key techniques were realized, including lunar soft landing, lunar surface rover exploration and surviving over lunar night, deep space communications and remote control operation, rocket directly launched into the earth-moon transfer orbit and other key technologies. The real-time radio altimeter and laser altimeter system onboard the spacecraft platform were applied to support the autonomous soft landing operation. This mission is the key one of Chinese lunar landing exploration phase.

3. Radio Sciences in Chang'E 3

Three kinds of radio science experiments have been planned in Chang'E 3 landing missions: 1) HF and VHF dual-band penetrator radar on the rovers; 2) same-beam X-band VLBI for precise positioning of rover; 3) precise radio phase ranging for lunar rotation and dynamics.

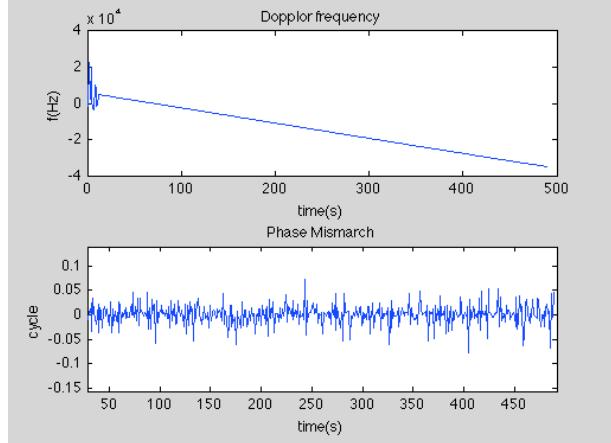


Figure 2. Chang'E -3 main carrier LRPR results:
Doppler (above) and phase noise (low).

Lunar laser ranging has been played key role on measuring the lunar rotation, Physical liberation and surface solid tides. However, the bad weather on laser site, the full Moon and new Moon phase may block the optical observation. Similar to Luna-Glob landers, together with the VLBI radio beacons, the radio transponders are also set on the Chang'E-3/4. Transponder will receive the uplink S/X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. The clocks between VLBI stations and deep space stations can be synchronized to UTC standard within 20 nanoseconds using satellite common view methods. In the near future there will be a plan to improve this accuracy to 5 nanoseconds or better, as the level of other deep space network around world. Radio science receivers have been developed by updating the multi-channel open loop Doppler receiver developed for VLBI and Doppler tracking in Yinghuo-1 and Phobos-Glob Martian missions. This experiment will improve the study of lunar dynamics, by means of measuring the lunar physical liberations precisely together with LLR data. Above method may be used in the next Chinese Martian mission.

4. Preliminary LRPR Result

During and after the Chang'E-3 landing period, 4 channel 1sp/s LRPR we obtained by using the planetary radio science receiver set at Kunming VLBI station, during the preliminary LRPR experiment. Total tracking period was about 100 minutes, with about 45 minute data after landing. Here only the results from main carrier wave signal are shown in this paper. Both of data types of three way Doppler and Phase ranging were obtained. The phase resolution has a noise RMS about 0.0189 circle, corresponding to a ranging resolution of 0.68 mm at X band. See Figure 2. This resolution is better than current LLR result of several mm to 1~2 cm.

Our data was obtained just after landing, the vibration of S/C platform due to firing the engine during landing period can be clearly seen in the phase data. The Figure 3 shows many harmonic waves of the vibrations many due to different parts of the S/C. The main vibration period is about 20 seconds. The spectra of at least 5 groups of vibrations can be identified, with amplitudes various from 0.002 circle through 0.034 circle, corresponding to 0.07mm through 1.35mm. The landing zone is rock area with less soft soil, the decay of the S/C vibration may have a long time in a space without air. Due to the main carrier and DOR tone have not been transmitted till we prepare the paper, we still have not chance to check the current vibration situation.

The high resolution LRPR technique was tested during the landing period. Different from LLR techniques, most of the VLBI station, especially the small antenna VLBI station and S/C tracking station can join the open loop LRPR observations, with will give a very nice observation geometry to improve the final resolution. We plan to use the technique to measure the lunar movement and dynamics as well as the geodynamics in the Chang'E-3 extended mission period, after its nominal mission period. The method can also be used in future lunar mission and mars mission. And, a new kind of space technique starts, beside VLBI, SLR/LLR, DORIS.

Acknowledgements

We thank to the supports from the Chang'E-3 tracking system and ground segments system.

References

[1] Dehant, V., LeMaistre, S., Rivoldini, A., et al., Revealing Mars' deep interior: Future geodesy missions using radio links between landers, orbiters, and the Earth Planetary and Space Science Vol. 59, 1069–1081, 2011