

RITD - Re-entry: Inflatable Technology Development in Russian Collaboration

J. Heilimo (1), A.-M. Harri (1), S. Aleksashkin (2), V. Koryanov (3), I. Arruego (4), W. Schmidt (1), **H. Haukka (1)**, V. Finchenko (2), M. Martynov (2), B. Ostresko (2), A. Ponomarenko (2), V. Kazakovtsev (3), S. Martin (4) and T. Siili (1)
(1) Finnish Meteorological Institute, Helsinki, Finland (jyri.heilimo@fmi.fi), (2) Federal Enterprise Lavochkin Association, Khimki, Russia, (3) Bauman Moscow State Technical University, Moscow, Russia, (4) Instituto Nacional de Técnica Aeroespacial, Madrid, Spain

Abstract

A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses on the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry.

1. EDLS for Earth

The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth's atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude.

The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. "Mini-1" category, see next chapter) of lander, and on requirements posed by other type Earth re-entry concepts.

2. Mini-1 Lander Category

Mini-1 category includes the descent vehicles with the mass of 20 kg to 50 kg. The descent vehicle of the given category is originally designed and intended for descending in the Mars atmosphere and landing onto its surface. In RITD-project we have determined the required modifications for the Mini-1 –lander so that it can be used for Earth re-entry with low-mass probes and payloads (see Table 1).

Mini-1 lander category is the baseline for the MetNet-type of lander (Figure 1) and it has been fully tested and qualified for Mars atmospheric entry with Mars parameters.

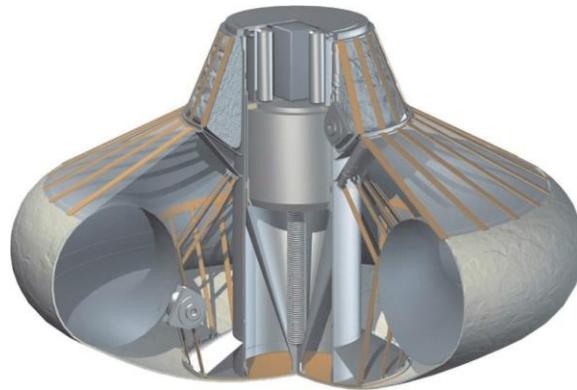


Figure 1: Mini-1 category lander EDLS. Figure: LA.

3. Application Opportunities

For each lander category (Mini-1, Mini-2, Middle-1, Middle-2 and Large) the RITD- experts determined the possible applications and main key technical requirements. These are briefly presented in the table 1. It has to be noted that same type of missions can be carried out with one or more type of category landers. The manned missions are exception

according to the RITD-experts and only Large category landers can be used for manned missions.

Table 1: Possible applications for category 1 to 5 landers. Table: LA/FMI.

Category	Application	Key technical requirements
Mini-1	Technology demonstration	- Safety of science devices
	Science mission	- Safety of landing (accuracy)
	Planetary exploration	- Aerodynamics
	Sample return mission	- Flight quality of inflatable technology
Mini-2	Technology demonstration	- Safety of science devices
	Science mission	- Safety of landing (accuracy)
	Planetary exploration	- Aerodynamics
	Down-mass mission	
	Sample return mission	
Middle-1	Down-mass mission	- Safety of landing (accuracy)
	Space laboratory mission	- Aerodynamics
	Science mission	- Safety of science devices
	Planetary exploration	- Safety of science experiments
Middle-2	Sample return mission	
	Space laboratory mission	- Safety of landing (accuracy)
	Planetary exploration	- Aerodynamics
Large	Sample return mission	- Safety of science devices
	Manned mission (emergency)	- Safety of landing (accuracy)
	Planetary exploration	- Aerodynamics
		- Crew safety (life-support system)

4. Wind Tunnel Tests

The aim of the wind tunnel test is an experimental determination of the Mini-1 -lander damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere.

Mini-1 wind tunnel tests are performed by the method of oscillation process analysis at air flow of the model fixed to the holder through free-oscillation mechanism. The program of the planned wind tunnel tests and realized parameters of the flow at chosen wind tunnels are shown in Table 2.

Table 2: Wind tunnel tests realized parameters. Table: LA/FMI.

Condition number	1	2	3	4	5	6	7
M_∞	0.85	0.96	1.05	1.19	1.25	1.30	1.55
$Re_{x0} \cdot 10^{-3}$	1.17	1.26	1.31	1.42	2.35	4.30	6.40
$q_\infty [\text{kg/m}^2]$	3427	4164	4782	5442	8013	9320	6477

Figure 2 shows the Mini-1 EDLS wind tunnel mock-up model that is in scale of 1:15. The mock-up model is manufactured in a single copy and it will be tested at all the values of Mach numbers, provided in Table 2.

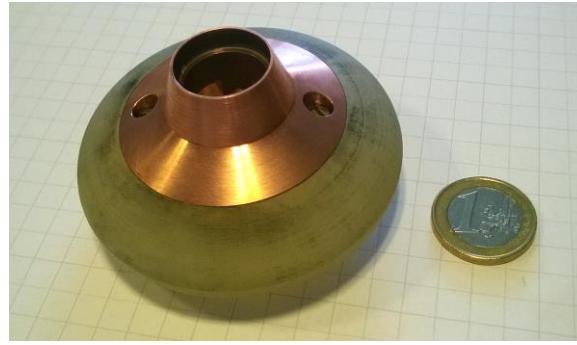


Figure 2: Mini-1 EDLS wind tunnel mock-up model. Photo: LA/FMI.

Acknowledgements

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 263255.

References

- [1] <http://ritd.fmi.fi>