

The global distribution of H_2SO_4 in the atmosphere of Venus as a trace gas for atmospheric dynamics derived from Venus Express Radio Science Experiment VeRa

J. Oschlisniok (1), M. Pätzold (1), S. Tellmann (1), B. Häusler (2), M. Bird (1,3), T. Andert (2), S. Remus (4), M. Herrmann (1)

(1) Rheinisches Institut für Umweltforschung, Abteilung Planetenforschung, Universität zu Köln, Köln, Germany.

(2) Institut für Raumfahrttechnik, Universität der Bundeswehr München, Neubiberg, Germany.

(3) Argelander – Institut für Astronomie, Universität Bonn, Bonn, Germany.

(4) European Space Astronomy Centre (ESAC), Villanueva, Spanien.

Abstract

The entire planet Venus is covered by a roughly 20 km thick cloud layer, consisting of liquid and gaseous sulfuric acid between ca. 50 and 70 km altitude. The density of the gaseous part increases and forms a ca. 15 km thick haze layer below ca. 50 km. The haze layer is responsible for the absorption of radio signals during radio occultation experiments. The absorption of the radio signal is a tool to derive the amount of H_2SO_4 as a function of altitude and latitude. The Radio Science Experiment VeRa sounds the Venus atmosphere with radio signals at 3.6 cm (X-Band) and 13 cm (S-Band) wavelengths. The derived atmospheric absorption profiles show the global H_2SO_4 distribution as a tracer of the predominant transport processes in the atmosphere of Venus. Vertical sulfuric acid vapor profiles are presented and compared with previous missions and other experiments on Venus Express. A distinct latitudinal H_2SO_4 gradient and a southern northern symmetry are clearly visible. Furthermore indications for temporal H_2SO_4 variations were found, at least at higher latitudes. The observed global H_2SO_4 distribution is used to derive information on the transport processes in the lower and middle atmosphere with respect to a 2D transport model.