

A new chemical scheme to study exoplanets atmospheres

O. Venot (1,2), E. Hébrard (3,4), R. Bounaceur (5) and L. Decin (1)

(1) Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
(olivia.venot@ster.kuleuven.be), (2) Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR 7583, Universités Paris Est Créteil et Paris Diderot, 94010 Créteil Cedex, France, (3) Université de Bordeaux, Laboratoire d’Astrophysique de Bordeaux, (4) CNRS/INSU, UMR 5804, BP 89, 33271 Floirac Cedex, France (5) Département de Chimie-Physique des Réactions, UMR 7630 CNRS, INPL-ENSIC, BP 451, 54001 Nancy Cedex, France

Abstract

At the time when the existence of nearly 2000 exoplanets have been confirmed, it is known that a wide variety of elemental chemical composition exists, that is to say different metallicities and C/N/O/H ratios [1, 2, 3, 4]. Atmospheres with a high C/O ratio (above 1) are expected to contain an important quantity of hydrocarbons, including heavy molecules (with more than 2 carbon atoms). To study correctly these kind of atmospheres, a chemical scheme adapted to this composition is necessary.

In this context, we have implemented a new chemical scheme than can describe the kinetics of species with up to 6 carbon atoms (C₆ scheme). This chemical scheme is totally new in planetology because it has been developed with specialists of combustion and validated through experiments on a wide range of temperature (300 - 2500 K) and pressure (0.01-100 bar). This large range of validation allow us to study a broad variety of atmospheres.

To determine in which studies this enhanced chemical scheme is mandatory, or in which one a smaller one can be sufficient, we have created a grid of 12 models to explore different thermal profiles and C/O ratios (solar and >1). For each of them, we have compared the chemical composition determined with a C₂ chemical scheme (species with up to 2 carbon atoms) [5] and with the C₆ scheme. We will present these results.

References

- [1] Madhusudhan, N., Mousis, O., Johnson, T. V. and Lunine, J. I.: Carbon-rich giant planets: atmospheric chemistry, thermal inversions, spectra, and formation conditions, *ApJ*, 743, 191, 2011
- [2] Moses, J. I., Madhusudhan, N., Visscher, C. and Freedman, R. S.: Chemical consequences of the C/O ratio on hot Jupiters: examples from WASP-12b, Corot-2b, XO-1b, and HD 189733b, *ApJ*, 763, 25, 2013
- [3] Agúndez, M., Venot, O., Selsis, F. and Iro, N.: The puzzling chemical composition of GJ 436b’s atmosphere: influence of tidal heating on the chemistry, *ApJ*, 781, 68, 2014
- [4] Venot, O., Agúndez, M., Selsis, F., Tessonnyi, M. and Iro, N.: The atmospheric chemistry of the warm Neptune GJ 3470b: Influence of metallicity and temperature on the CH₄/CO ratio, *A&A*, 562, A51, 2014
- [5] Venot, O., Hébrard, E., Agúndez, M., et al.: A chemical model for the atmosphere of hot Jupiters, *A&A*, 546, A43, 2012

Acknowledgements

O.V. acknowledges support from the KU Leuven IDO project IDO/10/2013 and from the FWO Postdoctoral Fellowship programme.