EPSC Abstracts Vol. 9, EPSC2014-390-1, 2014 European Planetary Science Congress 2014 © Author(s) 2014

A new model of the lunar ejecta cloud

A. A. Christou Armagh Observatory, Armagh, UK (aac@arm.ac.uk / Fax: +44-2837-527174)

Abstract

Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such "dust exospheres" have been observed around the Galilean satellites of Jupiter [2, 3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the recent investigation of the Moon's dust exosphere by the LADEE spacecraft [5].

Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.

Acknowledgements

Astronomical research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).

References

 Gault, D. Shoemaker, E. M., Moore, H. J.: Spray ejected from the lunar surface by meteoroid impact, NASA TN-D 1767, 1963.

- [2] Krüger, H., Krivov, A.V., Hamilton, D.P., Grün, E.: Detection of an impact-generated dust cloud around Ganymede, Nature, 399, 558, 1999.
- [3] Krüger, H., Krivov, A.V., Sremčević, M., Grün, E.: Impact-generated dust clouds surrounding the Galilean moons, Icarus, 164, 170, 2003.
- [4] Grün, E., Horányi, M., Sternovsky, Z.: The lunar dust environment, Planetary and Space Science, 59, 1672, 2011.
- [5] Elphic, R. C., Hine, B., Delory, G. T., Salute, J. S., Noble, S., Colaprete, A., Horányi, M., Mahaffy, P., and the LADEE Science Team: The Lunar Atmosphere and Dust Environment Explorer (LADEE): Initial Science Results, LPSC XLV, LPI Contr. 1777, 2677, 2014.