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Abstract

The tremendous volcanism on Jupiter’s moon Io as
well as the huge activity at the south pole of Saturn’s
moon Enceladus show that tidal dissipation is a very
strong source of energy for some bodies in the Solar
System. Outside the Solar System, tidal heating in
short-period exoplanets may cause lo-like volcanism,
large-scale melting and even thermal runaways [1-4].
Here we further develop the method to compute tidal
heating in heterogeneous bodies [5]. Especially, we
concentrate on the Andrade rheology implementation.
We study the impact of the improved model on bodies
with large lateral viscosity variation such as Enceladus
and tidally locked exoEarth with a large surface tem-
perature contrast due to uneven insolation [6]. We dis-
cuss the influence of empirical parameters describing
the Andrade rheology and compare the tidal heating
and tidal stress obtained for the Andrade rheology with
frequently used Maxwell models for different forcing
frequencies.

1. Governing equations

In order to evaluate the stress and deformation due to
tides, we consider small deformations in a hydrostati-
cally pre-stressed spherical incompressible viscoelas-
tic body. The time evolution of stress and displace-
ment in such a body is governed by the mass and mo-
mentum conservation equations:

V-u = 0, (1)
—-Vp+V-o0 = p(VP+VV), 2)

where p is the dynamic pressure, u is the displace-
ment, o is the deviatoric part of stress tensor, p is the
density, ® describes the time varying tidal potential
and V is the perturbation of the gravitational potential
induced by deformations of the surface. The relation-
ship between the strain tensor € = 1 (Vu + V')
and the deviatoric stress is described by the Andrade

rheology [7] which for stress-free initial conditions
o(t < 0) = 0 reads
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™ = g is the Maxwell time and « and ¢ are empirical
parameters. Besides the parameters needed to describe
the Maxwell rheology, namely viscosity 7 and shear
modulus y, the Andrade rheology depend also on two
additional parameters « and (.

We solve the equations in a spherical shell corre-
sponding to either a mantle of terrestrial planets or a
shell of icy moons. On the surface, a force equilibrium
is prescribed. The boundary conditions on the bot-
tom boundary combine the force equilibrium describ-
ing solid/liquid interface and no-slip boundary condi-
tions for solid/solid interface.

2. Method

The viscoelastic response of a body to the tidal load-
ing is solved numerically. Following method [5], we
integrate the set of equations in the time domain until
we reach a converge solution. This approach allows
to introduce the lateral variation of viscosity as well
as combination of boundary conditions on the bot-
tom boundary. This method was originally developed
for the Maxwell rheology, which, however, underesti-
mates the dissipation rate for forcing periods shorter
than the Maxwell time. In contrast, the Andrade rhe-
ology is designed to explain the viscoelastic response
for periods corresponding to tidal forcing [8].

The time discretization of equations (1)—(3) at the
time step ¢ + 1, considering constant time step At, is
as follows:
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where w;; are weights
wij = 1/2(i — 5 + 1) Ar*p~ L. @)

The first term on the right-hand side of equation (6) is
identical to the memory term in the case of a Maxwell
body [9]. The second term on the right-hand side cor-
responds to the continuous distribution of relaxation
processes, specific for the Andrade rheology, and it has
to be evaluated at each time step from scratch as the
weight w;; changes with time. The evaluation of this
term is thus time-consuming and memory-demanding
as it requires to store the stress during the whole time
evolution. Fortunately, it can be efficiently parallelized
using MPI protocol.

The spatial discretization employs spherical har-
monic function in horizontal directions and finite dif-
ference scheme in vertical direction [9]. The im-
plementation of the Andrade rheology was carefully
tested for the case of radially dependent viscosity
against the traditional Laplace domain solution [10].

3. Applications

The tidal dissipation plays an important role in both
internal dynamics and orbital evolution of many bod-
ies within the Solar System, such as Io and Enceladus.
Outside the Solar System, the short-period planets or-
biting the parent star at close distance are strongly in-
fluenced by tidal heating. The tidal stress may also
influence the tectonic activity as in the case of Ence-
ladus [12] and its analysis may help to constrain the
internal structure of the body [13].

The above described method is especially impor-
tant for bodies with large lateral variations in viscos-
ity. Here we concentrate on Enceladus the dichotomy
of which suggests strong lateral variations within the
ice shell. We compare the tidal heating and tidal stress
within the ice shell obtained using the Maxwell and
the Andrade rheology.

Tidally locked exoplanets exhibit a large surface
temperature contrast between sub-stellar and anti-
stellar sides due to uneven illumination of their sur-
face if no atmosphere is present [6]. The surface tem-
perature contrast induces asymmetric degree-1 pattern
of mantle convection [14, 15] and large temperature
and hence viscosity anomalies. Here we discuss the
stress and tidal heating distribution in short-period ex-
oEarths. We show the difference between the Maxwell

rheology and the Andrade rheology for different fre-
quencies. We concentrate on influence of empirical
parameters « and ¢ describing the continuous distri-
bution of the relaxation processes. Further we study
the time dependence of phase lag and time lag during
one orbit.
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