

## Quasi-periodic injections of relativistic electrons in Saturn's outer magnetosphere

**E. Roussos (roussos@mps.mpg.de)** (1), N. Krupp (2), D.G. Mitchell (2), C. Paranicas (2), S.M. Krimigis (2,3), M. Andriopoulou (4), W.S. Kurth (5), S. Badman (6) A. Masters (7), M.K Dougherty (8)  
(1) Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3,37077, Goettingen, Germany (2) Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099, USA (3) Academy of Athens, Greece, (4) Space Science Research Institute, Austrian Academy of Science, Schmiedlstrasse 6, 8042, Graz, Austria (5) Department of Physics and Astronomy, University of Iowa, 613 Van Allen Hall, Iowa City, IA 52242-1479 (6) Lancaster University, UK (7) Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan (8) Space and Atmospheric Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK

### Abstract

Quasi-periodic, short-period injections of relativistic electrons have been observed in both Jupiter's and Saturn's magnetospheres, but understanding their origin or significance has been challenging, primarily due to the limited number of in-situ observations of such events by past flyby missions. Here we present the first survey of such injections in an outer planetary magnetosphere using almost nine years of energetic charged particle and magnetic field measurements at Saturn. We focus on events with a characteristic period of about 60-minutes (QP60), which we find to be very common in the outer magnetosphere (mapping outside Titan's orbit). QP60 are present over a very wide range of local times and latitudes and their distribution is asymmetric. The local time asymmetry is the most striking feature, with higher frequency of QP60 observations at dusk compared to dawn. The events at dusk reside on closed field lines and are distributed over a wide range of distances from the magnetopause. The ones at dawn map either on open field lines or along the magnetopause boundary. Those asymmetries indicate that the origin of QP60 is not unique. We suggest that a subset of the injections at the post-dusk sector may be signatures of the Vasisiunas reconnection cycle, while magnetopause reconnection or KH-instability may be invoked to explain all other events around dusk. Injections at the dawnside magnetosphere, which occur preferentially at the southern hemisphere, may result from solar-wind induced storms. We also observe that electrons in a QP60 can be accelerated at least up to 6 MeV, suggesting that these injections can be an efficient source process of

energetic electrons for the saturnian magnetosphere. The distribution of QP60 appears also to trace well the aurora's local time structure, an observation that could have implications about high-latitude electron acceleration. Despite these new findings, it is still unclear what determines the rather well-defined 60 minute period of the electron bursts and how electrons can reach rapidly up to energies of several MeV.