

Interpretation of the $^{14}\text{N}/^{15}\text{N}$ ratio measured in Saturn's ammonia

O. Mousis (1,2), **J. I. Lunine** (1), **L. N. Fletcher** (3), **K. E. Mandt** (4), **D. Gautier** (5) and **S. Atreya** (6)
 (1) Center for Radiophysics and Space Research, Cornell University, USA (olivier.mousis@obs-besancon.fr) (2) Laboratoire UTINAM, UMR 6213 CNRS, Université de Franche Comté, Besançon, France (3) Atmospheric, Oceanic & Planetary Physics, Department of Physics, University of Oxford, Clarendon Laboratory, UK, (4) Southwest Research Institute, San Antonio, TX 78228, USA, (5) LESIA, Observatoire de Paris, CNRS, UPMC, Univ. Paris-Diderot, France, (6) Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, USA

Abstract

1. Introduction

The recent derivation of a 1-sigma lower limit for the $^{14}\text{N}/^{15}\text{N}$ ratio in Saturn's ammonia, which is found to be ~ 500 [1], prompts us to revise models of Saturn's formation using as constraints the abundances of heavy elements inferred in its atmosphere. This lower limit is found consistent with the $^{14}\text{N}/^{15}\text{N}$ ratio (~ 435) measured by the Galileo probe at Jupiter and implies that the two giant planets were essentially formed from the same nitrogen reservoir in the nebula, which is N_2 [1]. However, in contrast with Jupiter whose C and N enrichments are uniform, carbon is more than twice enriched in Saturn's atmosphere compared to nitrogen. This non-uniform enrichment at Saturn, considered with the recent derivation of a lower limit for the $^{14}\text{N}/^{15}\text{N}$ ratio, challenges the formation models elaborated so far. Here we propose an alternative formation scenario that may explain all these properties together.

2. Measurements at Saturn

Tables 1 and 2 summarize the isotopic ratios and elemental abundances measured in Saturn's atmosphere (see [2] and references therein for details). The lower limit of the $^{14}\text{N}/^{15}\text{N}$ ratio in Saturn's ammonia was derived from TEXES/IRTF observations [1]. Others isotopic ratios measured in Saturn are D/H in H_2 (determination from ISO-SWS) [3] and $^{12}\text{C}/^{13}\text{C}$ in CH_4 (Cassini/CIRS observations) [4]. Meanwhile, only the abundances of CH_4 , PH_3 , NH_3 and H_2O , and indirectly that of H_2S , have been measured in Saturn. The abundance of CH_4 has been determined from the analysis of high spectral resolution observations from CIRS [4]. PH_3 has been determined remotely in Saturn from Cassini/CIRS observations at $10\ \mu\text{m}$ [5]. The

Table 1: Isotopic ratios in Saturn

Isotopic ratio	η	Saturn		Reference
$^{14}\text{N}/^{15}\text{N}$ (in NH_3)	500 ^(a)		$\Delta\eta$	[1]
D/H (in H_2)	1.70×10^{-5}	$+0.75$	-0.45×10^{-5}	[3]
$^{12}\text{C}/^{13}\text{C}$ (in CH_4)	91.8	$+8.4$	-7.8	[4]

^(a)This is a lower limit.

NH_3 abundance is taken from the range of values derived by [6] from Cassini/VIMS 4.6–5.1 μm thermal emission spectroscopy. Tropospheric H_2O has been inferred in Saturn via ISO-SWS [7]. However, H_2O is unsaturated at this altitude (~ 3 bar level), implying that its bulk abundance is probably higher than the measured one. The H_2S abundance is quoted from the indirect determination of [8]. The He abundance in Saturn's atmosphere derives from a reanalysis of Voyager's IRIS measurements [9].

Table 2: Enrichments in Saturn relatives to Protosun

Species	E	$\Delta E^{(a)}$	References
C	9.90	1.05	[4]
N	0.53–4.07	–	[6]
O ^(b)	$\sim 10^{-4}$	–	[7]
P	11.54	1.35	[5]
S	15.87	–	[8]
He	0.71	0.14	[9]

^(b)this is a lower limit; ^(c)this is a upper limit.

3 Previous formation models

Two formation models trying to match Saturn's volatiles enrichments have been elaborated so far. [10]

assumed that Saturn formed at \sim 50K and found that the ices trapped in Saturn's building blocks were constituted from CH_4 and H_2S trapped in clathrates, NH_3 in hydrates, and CO_2 as pure ice. CO and N_2 were not trapped in the feeding zone and hold well mixed with H_2 until gases collapsed onto the core of the planet. As a result, [10] found that it is possible to match the C, N and S enrichments measured at Saturn from the only incorporation of NH_3 , CH_4 and CO in solids. However, their scenario is ruled out because it predicts that Saturn's $^{14}\text{N}/^{15}\text{N}$ should be intermediate between those of Jupiter and the Earth. Alternatively, [11] proposed that Saturn may have formed at cooler temperature (\sim 20 K) in the disk. In this scenario, not only CH_4 , H_2S and CO_2 were trapped in solids following the same condensation sequence as in [10], but CO and N_2 were equally trapped in clathrates. [11] did not reproduce the non uniform C and N enrichments observed in Saturn but their model gives a $^{14}\text{N}/^{15}\text{N}$ ratio consistent with the lower limit since it considers primordial N_2 as the main nitrogen reservoir.

4 A new scenario consistent with the observations

As mentioned above, the upper limit for the $^{14}\text{N}/^{15}\text{N}$ ratio found by [1] implies that Saturn's nitrogen was essentially in the form of N_2 at the time of its formation. On the other hand, the higher C enrichment (compared to N) found at Saturn imposes that CH_4 , CO_2 and CO were trapped in the solids accreted by its envelope, while at least N_2 was untrapped and remained mixed with the feeding zone H_2 . It has been shown that, at nebular conditions, the trapping competition between N_2 and CO in clathrates greatly favors the trapping of the latter molecule to the expense of the former [12]. In these conditions, CO would be trapped with CH_4 and CO_2 in multiple guest clathrates at \sim 50K [12] while N_2 would remain in the disk's gas phase. If one assumes that Saturn formed at a higher temperature than the one required for N_2 condensation and trapping in solids, then the resulting nitrogen enrichment in the envelope should be moderate, compared to that of carbon. On the other hand, gaseous N_2 would still remain the main N-bearing reservoir accreted by Saturn at the time of the envelope collapse, implying that the resulting $^{14}\text{N}/^{15}\text{N}$ ratio should match the inferred lower limit.

References

- [1] Fletcher, L. N., Greathouse, T. K., Orton, G. S., Irwin, P. G. J., Mousis, O., Sinclair, J. A., Giles, R. 2014. The origin of nitrogen on Jupiter and Saturn from the $^{15}\text{N}/^{14}\text{N}$ ratio. *Icarus*, in press.
- [2] Mousis, O., et al. 2014, Scientific Rationale of Saturn's *in situ* exploration, submitted to *Plan. Space Sci.* (and references therein).
- [3] Lellouch, E., Bézard, B., Fouchet, T., Feuchtgruber, H., Encrénaz, T., de Graauw, T. 2001. The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. *Astronomy and Astrophysics* 370, 610-622.
- [4] Fletcher, L. N., Orton, G. S., Teanby, N. A., Irwin, P. G. J., BJORAKER, G. L. 2009. Methane and its isotopologues on Saturn from Cassini/CIRS observations. *Icarus* 199, 351-367.
- [5] Fletcher, L. N., Orton, G. S., Teanby, N. A., Irwin, P. G. J. 2009. Phosphine on Jupiter and Saturn from Cassini/CIRS. *Icarus* 202, 543-564.
- [6] Fletcher, L. N., Baines, K. H., Momary, T. W., Showman, A. P., Irwin, P. G. J., Orton, G. S., Roos-Serote, M., Merlet, C. 2011. Saturn's tropospheric composition and clouds from Cassini/VIMS 4.6-5.1 μm nightside spectroscopy. *Icarus* 214, 510-533.
- [7] de Graauw, T., and 18 colleagues 1997. First results of ISO-SWS observations of Saturn: detection of CO_2 , $\text{CH}_3\text{C}_2\text{H}$, C_4H_2 and tropospheric H_2O . *Astronomy and Astrophysics* 321, L13-L16.
- [8] Briggs, F. H., Sackett, P. D. 1989. Radio observations of Saturn as a probe of its atmosphere and cloud structure. *Icarus* 80, 77-103.
- [9] Conrath, B. J., Gautier, D. 2000. Saturn Helium Abundance: A Reanalysis of Voyager Measurements. *Icarus* 144, 124-134.
- [10] Hersant, F., Gautier, D., Tobie, G., Lunine, J. I. 2008. Interpretation of the carbon abundance in Saturn measured by Cassini. *Planetary and Space Science* 56, 1103-1111.
- [11] Mousis, O., Marboeuf, U., Lunine, J. I., Alibert, Y., Fletcher, L. N., Orton, G. S., Pauzat, F., Ellinger, Y. 2009. Determination of the Minimum Masses of Heavy Elements in the Envelopes of Jupiter and Saturn. *The Astrophysical Journal* 696, 1348-1354.
- [12] Mousis, O., Guibert-Lepoutre, A., Lunine, J. I., Cochran, A. L., Waite, J. H., Petit, J.-M., Rousselot, P. 2012. The Dual Origin of the Nitrogen Deficiency in Comets: Selective Volatile Trapping in the Nebula and Postaccretion Radiogenic Heating. *Astrophys. J.* 757, 146.