

Titan's evaporites structure and their formation time-scale

D. Cordier¹, Jason W. Barnes², T. Le Bahers³, T. Cornet⁴ and A. Ferreira⁵

¹Institut UTINAM, CNRS/INSU, UMR 6213, 25030 Besançon Cedex, France
 (daniel.cordier@obs-besancon.fr), ²Department of Physics, University of Idaho,
 Engineering-Physics Building, Moscow, ID 83844, USA, ³Université de Lyon, Université Claude Bernard Lyon
 1, ENS Lyon, Laboratoire de Chimie UMR 5182, 6 allée d'Italie, 69007 Lyon Cedex 07, France, ⁴European
 Space Agency (ESA), European Space Astronomy Centre (ESAC), Villanueva de la Canada (Madrid), Spain,
⁵Departamento de Engenharia Química, Universidade de Coimbra, Coimbra 3030-290, Portugal

Abstract

Hydrocarbons lakes have been discovered in polar regions of Titan (Stofan *et al.* 2007) [1]. Already, Stofan *et al.* (2007) noticed features suggesting the occurrence of an evaporation process in the recent past. Barnes *et al.* (2009) [2] performed a detailed study of shoreline features of Ontario Lacus, they interpreted the 5-μm bright annulus around this lakes as a dry, low-water ice content zone, possibly corresponding to a deposit of organic condensates. Barnes *et al.* (2011) [3] used a sample of several lakes and lakebeds located in a region south of the Ligeia Mare. They got a strong correlation between RADAR-empty lakes and 5-μm bright units interpreted as low-water ice content areas.

On the theoretical side, Cordier *et al.* (2013) [4] elaborated a model for the chemical composition of the external layer of these possible organic evaporite deposits. This model was based on a simplified theory of dissolution (ideal solution and regular solution theory) and all computations were performed using a time-scale which did not enable any estimation for the depth of deposits layers.

On several crucial points, the model proposed in this paper has been improved compared to Cordier *et al.* (2013) [4]: (1) instead of the uncertain Regular Solution Theory (RST) the PC-SAFT¹ theory has been employed for the calculation of the activity coefficients, (2) the heat capacity terms in the equation

are now estimated, (3) the molar volumes of the involved organic solutes are here computed thanks to a sophisticated *ab initio* technics based on the Density Functional Theory (DFT) and the Vienna ab-initio Software Package (VASP) 5.3 version. The PC-SAFT theory (Gross & Sadowski, 2001) [5] is widely used in the chemical engineering community, and has been successfully introduced in Titan's studies field by Tan *et al.* (2013) [8]. In our context of solids dissolution in cryogenic solvents (mainly methane and ethane) we have check the performance of PC-SAFT by comparing the outputs of this theory with recently obtained experimental results.

The present model allow us to compute the possible structure and composition of Titan's evaporites as a function of their depth. The features of "bathtub rings" are also discussed and the formation time-scale is estimated in the light of the methane and ethane measured evaporation rates (Luspay-Kuti *et al.*, 2012, Luspay-Kuti *et al.*, 2014) [6, 7].

References

- [1] Stofan, et al., *Natur*, 44561, 2007.
- [2] Barnes, et al., *Icarus*, 201, 217, 2009.
- [3] Barnes, et al., *Icarus*, 216, 136, 2011.
- [4] Cordier, et al., *Icarus*, 226, 1431, 2013.
- [5] Gross & Sadowski, *Ind. Eng. Chem. Res.*, 40, 1244, 2001.
- [6] Luspay-Kuti et al., *GRL*, 39, L23203, 2012
- [7] Luspay-Kuti et al., submitted, 2014
- [8] Tan et al., *Icarus*, 222, 53, 2013.

$$\begin{aligned} \ln \Gamma_i X_{i,\text{sat}} = & - \frac{\Delta H_{i,m}}{RT_{i,m}} \left(\frac{T_{i,m}}{T} - 1 \right) \\ & - \frac{1}{RT} \int_{T_m}^T \Delta c_p \, dT \\ & + \frac{1}{R} \int_{T_m}^T \frac{\Delta c_p}{T} \, dT \end{aligned}$$

¹Perturbed Chain Statistical Associating Fluid Theory