EPSC Abstracts

Vol. 9, EPSC2014-476, 2014

European Planetary Science Congress 2014
(© Author(s) 2014

EPSC

European Planetary Science Congress

Calculation of illumination conditions at the lunar south pole
- parallel programming approach

R. Marco Figuera (1), P. Gldser (1), J. Oberst (1,2) and D. De Rosa (3)
(1) Technical University Berlin, Department of Geodesy and Geoinformation Science, Str. des 17. Juni 135, 10623 Berlin,

Germany, (rmafi @campus.tu-berlin.de)

(2) German Aerospace Center, Institute of Planetary Research, Rutherfordstrasse 2, 12489 Berlin, Germany
(3) European Space Agency, ESTEC, Keplerlaan 1, 2200 AG Noordwijk ZH, The Netherlands

Abstract

In this paper we present a parallel programming ap-
proach to evaluate illumination conditions at the lu-
nar south pole. Due to the small inclination (1.54°)
of the lunar rotational axis with respect to the eclip-
tic plane and the topography of the lunar south pole,
which allows long illumination periods, the study of
illumination conditions is of great importance. Sev-
eral tests were conducted in order to check the viabil-
ity of the study and to optimize the tool used to calcu-
late such illumination. First results using a simulated
case study showed a reduction of the computation time
in the order of 8-12 times using parallel programming
in the Graphic Processing Unit (GPU) in comparison
with sequential programming in the Central Process-
ing Unit (CPU).

1. Introduction

The calculation of illumination conditions for a cer-
tain Region of Interest (Rol) can be a highly time con-
suming process and mainly depends on the size of the
Rol. The illumination calculation is achieved by com-
paring the elevation of the Sun w.r.t. an observer on
the surface of the moon to the maximum elevation of
the terrain in the same direction. The calculation of
the visible fraction of the solar disk is then derived
which represents the degree of illumination.[2]. While
sequential programming executes processes one after
another, parallel programming executes multiple pro-
cesses at the same time [3]. If we consider each pixel
of our Rol as an individual process we can apply par-
allel programming techniques to evaluate the illumi-
nation for multiple pixels at the same time, and thus
reducing the computation time.

To achieve such an improvement we will have to
consider the size of the input data as well as the size
of the process to be executed concurrently. The paral-

lel programming approach has been programmed us-
ing Open Computing Language (OpenCL) and the se-
quential approach using C++. The test case was run
on a quad-core Intel Xeon CPU and a Nvidia Quadro
FX 1800 GPU.

2. Method

We have conducted a simulation by using a variable re-
gion of interest (1000 to 10000000 pixels) and differ-
ent platforms (CPU and GPU) to check whether and to
which degree the use of OpenCL decreases the compu-
tation time. The case study has been set up as a simple
vector addition problem to be executed for each pixel
and all the process repeated for 360 times. The reason
to do such a repetition is to simulate the derivation of
a complete horizon as seen in Fig. 1 from an observer
on the lunar surface.

0 45 90 135 180 225 270 315 360
|

1 ! | | | | | 1

01 - o

-1 ’\/__,\\, A -

2|/ o /N M -2

-3 1 e - -3

_4 I I T T I T T _4
0 45 90 135 180 225 270 315 360

-* T T T T T |-[km]

20 40 60 80 100120 140 160 180

Figure 1: Preliminary results of an horizon as seen
from an observer near the lunar south pole. The dis-
tance to the horizon is color coded.

Five different approaches have been studied in this
paper, one sequential programming approach using
C++ on the CPU, one parallel approach using OpenCL
on the CPU and 3 parallel approaches using OpenCL
on the GPU.

For the OpenCL approaches different configura-
tions have been considered. The OpenCL CPU ap-

proach uses the maximum number of cores in our card.
For the OpenCL GPU approaches 3 different scenarios
have been considered varying the number of processes
(threads) that can be launched concurrently: 1 thread,
2 threads and an optimal number of threads. In this
case the variation of the number of threads will change
the number of pixels that can be computed at the same
time.

3. Results

For a small number of pixels, no difference between
the approaches can be noticed. As the number of pix-
els of the Rol increase the approaches start to show
different behaviors. From Fig. 2 we can conclude that
the usage of the GPU with 1 thread is twice as slow as
the CPU approach. This is due to the time necessary
for the GPU to access the data stored in the memory.
When the number of threads is increased the time will
be reduced as there will be more than one process run-
ning at the same time. The use of an optimal number
of threads will increase the performance of our tool by
a factor of 8-12 with respect to the CPU C++ approach
and by an order of 3 with respect to the CPU OpenCL
approach. As can be noted in Fig. 2 the use of OpenCL
running on the GPU with an optimal number of threads
is unrivaled for larger areas.

30

25

20 / - CPU
—+—CPU 4 Cores
-#-GPU 1 thread

15 -¥-GPU 2 threads
/ —4-GPU optimal size
10 /
5
4%%

0
1000 10000 100000 1000000 10000000

Computation time [seconds]

Number of pixels of Rol

Figure 2: Comparison of computation time for each
approach depending on the size of the input data.

4. Summary and Conclusions

Five different tests were conducted in order to deter-
mine the performance of parallel programming in gen-
eral and especially for the calculation of illumination
conditions. The results show that the use of parallel
programming on the GPU in combination with larger
Rols can improve the performance significantly in
comparison with sequential programming approaches.

Since the analyzed Rols are in the order of hundred
thousands to millions of pixels [1], the GPU approach
is evidently favorable.

Considering the results we can assume that an
OpenCL GPU approach using its optimal number of
threads will decrease the computation time in the or-
der of 8-12 compared to an approach using C++ in the
CPU and in the order of 3 compared to an approach
using OpenCL in the CPU.

5. Future Work

The final goal of such a study is to develop an OpenCL
tool to calculate the horizon and illumination condi-
tions using the CPU and the GPU respectively. Cur-
rently a first version of the OpenCL CPU tool for the
calculation of the horizon is cross-validated. Once the
tool is fully operational we will be able to quickly de-
rive illumination conditions for various sites at the lu-
nar south pole.

Acknowledgements

This project was funded by a Grant of the German
Space Agency (FKZ 500W1202).

References

[1] De Rosa, D., Bussey, B., Cahill, J.T., Lutz, T., Craw-
ford, I.A., Hackwill, T., van Gasselt, S., Neukum, G.,
Witte, L., McGovern, A., Grindford, P.M., Carpenter,
J.D., : Characterisation of potential landing sites for the
European Space Agency’s Lunar Lander project. Plane-
tary and Space Science 74, 224-246. 1208.5587., 2012.

[2] Gléaser, P., Scholten, E., De Rosa, D., Marco Figuera,
R., Oberst, J., Mazarico, E., Neumann, G.A., Robinson,
M.S.: A highly illuminated landing site at the lunar south
pole - Connecting Ridge. EPSC 2014.

[3] Munshi, A., Gaster,B., Mattson, T. G., Ginsburg, D.:
OpenCL Programming Guide, Pearson Education, 2011.

