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Abstract

Exoplanet atmospheres become a key laboratory for
radiative transfer, which requires to be explored for a
broader range of atmospheric condition than our So-
lar System atmospheres. In this study, we develop a
package of codes that includes a k-distribution calcu-
lator, a radiative transfer solver for exoplanet atmo-
spheres based on a numerical method, and a calculator
for radiative equilibrium temperature in both optically
thin regime (two-stream approximation) and optically
thick regime (flux-limited diffusion approximation).
Given a high-speed Graphics Processing Unit (GPU)
platform, we take advantage of a parallel computing
which allows an acceleration of radiative transfer cal-
culation while tabulating k-distributions, integrating
transmissions, etc. We present benchmark tests for the
pure H2O case, ranging from a line-by-line calculation
for a set of a small number of HyO lines to a com-
plete temperature profile in radiative equilibrium for
a heterogeneous type of exoplanet atmospheres. The
purpose of the tests is to validate our model before we
adopting our radiative transfer code to a 3-dimensional
general circulation model (GCM).

1. Introduction

A radiative transfer solver for planetary atmospheres
is a versatile tool that enables us to understand the
theoretical aspects of thermal structure and chemistry
of atmospheres in radiative equilibrium, to interpret
the remotely-sensed spectra of transiting or directly-
imaged exoplanets, and to calculate the heating and
cooling rates for a given thermal condition in general
circulation models (GCMs). The solution of radiative
transfer in planetary atmospheres has long been dis-
cussed in the literature (e.g. [1, 2, 3]) and they pro-
vided insights to the radiative equilibrium states that
can be numerically explained by an approximation,
i.e., “two-stream approximation”. However, a clear
description on the process that covers from molecu-
lar line to heating/cooling rate in a column of atmo-

sphere has not been clearly accomplished for exoplan-
ets, e.g., hot Jupiters. In this sense, the main objective
of this study is to introduce the benchmark cases for
each step of radiative transfer calculation using a pure
H50O atmosphere, which are useful for the validation
of radiative transfer codes available in the community.
As a significant improvement over previous methods,
we address a parallel computing technique so that we
can accelerate a radiative transfer calculation by a fac-
tor of ~100 compared to a serial computing technique.

2. Methodology

We present the wavelength-dependent transmission
calculation based upon a correlated k-distribution
technique and a radiative transfer solver using both a
two-stream approximation and a flux-limited diffusion
method. We introduce a set of algorithms that all take
advantage of a parallel computation accelerated by the
GPU architecture.

2.1. k-distribution calculator

Calculating transmission for a given temperature and
pressure in the present study is performed based on a
correlated k technique [4, 5], where the mean trans-
mission is defined by
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Here m is the abundance of molecule and N is
the number of G-abscissae, where k(G;), ie., k-
coefficients, are calculated. A set of k-coefficients in
a given wavelength bin is computed in a parallel com-
puting framework and tabulated in a grid of tempera-
ture, pressure, and wavelength.

2.2. Two-stream approximation

In the purely absorbing limit, the upward and down-
ward fluxes (F} and F) at an interface between two



adjacent layers (Layer 1 and 2) can be computed by
integrating over hemispheres, yielding
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where 7 is the transmission function of a layer that
is calculated from k-coefficients in Section 2.1 and B
is the Planck function. Here we assume isothermality
in each layer, i.e., 0B/07=0. An approximate way to
write the transmission function is

T =~ exp (—DAT), 4)

where D is the diffusivity factor, which can be treated
in various ways, and AT = 75 — 71. Two-stream ap-
proximation is accurate in optically thin atmospheres.

2.3. Radiative Equilibrium Temperature

For optically thin atmospheres, the net flux in a layer is
the sum of the incoming fluxes from neighboring lay-
ers and the outgoing fluxes towards neighboring lay-
ers.

AF = (Fip+ Fla) — (Flp + Fia) - ()

The subscript b and a mean that the departure of the
flux is the layer below and above. The heating rate of
a layer is now
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where ¢, p, and Az are the specific heat capacity at
constant pressure, mass density, and layer thickness,
respectively. A new temperature is

T =T+ HAt, @)

where At is the time step in day, which determines
the speed of radiative relaxation to radiative equilib-
rium. In radiative equilibrium, the flux change be-
tween neighboring layers are static with time step, i.e.,
AF/At=0 for all layers.

For optically thick atmospheres, two-stream ap-
proximation with isothermality is no longer valid
(0B/0T # 0) if the vertical resolution of atmosphere
is insufficient, where a flux-limited diffusion approxi-
mation is much more reasonable to describe radiative
transfer. Then the temperature from diffusion is
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where T}, is the intrinsic temperature, which deter-
mines the internal heat condition of the atmosphere,
and kg is the Rosseland mean opacity. P and ¢ are
pressure and gravity. Therefore, the final temperature
profile is characterised by a combination of the flux
contributions from 7" and T; ff

3. Summary and Conclusions

We developed the GPU-accelerated algorithms for the
description of radiative transfer in heterogeneous ex-
oplanet atmospheres and presented a series of bench-
mark tests which can be useful to validate radiative
transfer codes from the community. With a success-
ful development, we will implement the codes into the
3-D GCM for exoplanets that are currently under de-
velopment (see the presentation by Mendonca et al.).
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