

How fast do hydrocarbons condense in Titan's atmosphere? Insights from the laboratory

L. Biennier, J. Bourgalais, M. Capron, V. Roussel, and S.D. Le Picard

Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France (ludovic.biennier@univ-rennes1.fr)

Abstract

Titan's dense atmosphere shows a complex photochemistry initiated by the dissociation of its two most abundant components, nitrogen N₂ and methane CH₄. This cold chemistry generates a plethora of hydrocarbons and nitriles and takes part in the production of a thick haze. According to a recent scenario constructed from Cassini-Huygens measurements, the chemical reactions and physical processes occurring at high altitudes near 1000 km could be the haze source [1]. This haze material could act as a nucleus for the condensation of organic vapors in Titan's stratosphere and troposphere. However, the pathways leading to the formation and growth of haze aerosols remain far to be well understood.

Hydrocarbons, which are formed in Titan's cold atmosphere, starting with ethane C₂H₆, ethylene C₂H₄, acetylene C₂H₂, propane C₃H₈... up to benzene C₆H₆, play also some active role in aerosol production, cloud processes, rain generation and Titan's lakes formation.

Our goal is to study in the laboratory the kinetics of the first steps of condensation of these hydrocarbon molecules. Several studies have investigated the phase of e.g. ethane and propane and their spectral signatures. At the exception of our recent studies on the dimerization of pyrene C₁₆H₁₀ [2] and anthracene C₁₄H₁₀ [3] performed over the 50-300 K temperature range, there is however no other work on the first elementary steps of the kinetics of nucleation for hydrocarbons.

Here we present the first experimental kinetics study of the dimerization of a small hydrocarbon: propane C₃H₈. We have performed experiments to identify the temperature range over which small propane clusters form in saturated uniform supersonic flows. Using

our unique reactor based on a Laval nozzle [4], the kinetics of the formation has also been investigated over the 15-300 K temperature range. The chemical species present in the reactor are probed by a time of flight mass spectrometer equipped with an electron gun for soft ionization of the neutral reagents and products. The experimental data is combined with state-of-the-art theoretical calculations that employ careful consideration of the intermolecular interaction energies and intermolecular dynamics to estimate the binding energy, equilibrium constant, and rate coefficients.

This work aims at putting some constraints on the role of small hydrocarbon condensation in the formation of haze particles in the dense atmosphere of Titan.

Acknowledgements

This research is supported by the CNRS-INSU Programme de Planétologie (PNP) and the CNRS-INSU Programme de Physique et Chimie du Milieu Interstellaire (PCMI).

References

- [1] J.H. Waite, Jr., D.T. Young, et al., The process of tholin formation in Titan's upper atmosphere, *Science*, 316 (2007) 870-875.
- [2] H. Sabbah, L. Biennier, et al., Exploring the Role of PAHs in the Formation of Soot: Pyrene Dimerization, *Journal of Physical Chemistry Letters*, 1 (2010) 2962-2967.
- [3] L. Biennier, H. Sabbah, et al. Insights into the role of polycyclic aromatic hydrocarbon condensation in haze formation in Jupiter's atmosphere, *Astronomy & Astrophysics*, 532 (2011).