

Experimental simulation of the condensation and metamorphism of seasonal CO₂ condensates under martian conditions.

F. Grisolle, **B. Schmitt**, P. Beck, S. Philippe and O. Brissaud

Institut de Planétologie et Astrophysique de Grenoble (IPAG), Univ. Grenoble Alpes / CNRS, Grenoble, France.
(Bernard.Schmitt@obs.ujf-grenoble.fr)

Abstract

An experimental set-up, CARBON-IR, has been developed in order to perform the condensation and metamorphism of CO₂ condensates in various controlled martian conditions at, or out of, equilibrium. The sample texture is monitored and near-infrared reflectance spectra are recorded. We present a first set of experiments aimed to simulate the formation of compact translucent slabs by condensation of CO₂ gas, the metamorphism of CO₂ snow, as well as their sublimation.

1. Introduction

The understanding of the microphysical processes occurring during the condensation, metamorphism and sublimation of the seasonal condensates is requisite to correctly interpret their spectral and photometric evolutions during their whole cycle, as recorded by numerous in-orbit instruments. GCMs also need to include these processes to better represent their effects on Mars's climate and on the spatio-temporal ices distribution. Bright CO₂ snow/frost as well as compact and translucent layers (slabs) have been detected in the seasonal deposits by spectro-imagers (OMEGA, CRISM). The later are suspected to be at the origin of geysers and spiders. How solid CO₂ form and evolve at the surface of Mars is still an open question. It can form as snow in the atmosphere and precipitate, or directly as frost or ice at the surface, with varying grain sizes, texture as well as thermal and radiative properties. The possible evolution pathways between these forms are even less understood.

2. CarboN-IR setup

An experimental set-up, CarboN-IR, has been developed in order to better understand the conditions of formation and evolution of the different

seasonal condensates on Mars, their associated textures as well as their spectral and radiative properties. This setup allows us to simulate the condensation and metamorphism of CO₂ condensates in various controlled martian conditions at, or out of, equilibrium.

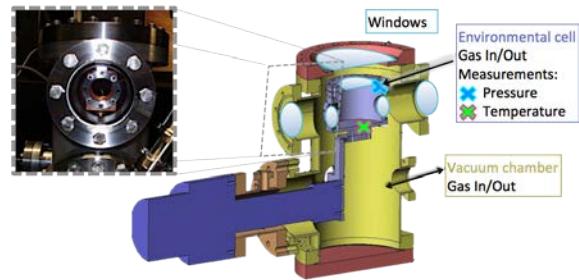


Figure 1: Schematic of the CarboN-IR setup. Insert: picture of the cell from the side window.

It is mostly made of a large (6 x 8 cm) and almost isothermal environmental cell cooled by a temperature controlled closed cycle cryostat (40-300K). The temperature and pressure inside the cell are controlled and accurately measured. Composition, amount and flux of gases are controlled by a thermodynamic system (pressure gauges and flux controller). Top and lateral windows allow us to observe the sample texture. The whole system is placed inside our spectro-gonio radiometer to allow bi-directional spectral measurements from 0.4 to 4.8 μ m.

Different types of samples can be formed either ex-situ and placed in the cell or in-situ with different substrates (ice, minerals, ...).

3. CO₂ snow metamorphism

A CO₂ snow sample with ~50% porosity and 10 μ m grain size was formed ex-situ and placed in the cell at -125°C. Its evolution was monitored during 6 weeks.

A progressive formation of compact and translucent slab from the bottom was observed. It occurred by sublimation-recondensation of CO₂ through the snow porosity due to the weak vertical thermal gradient.

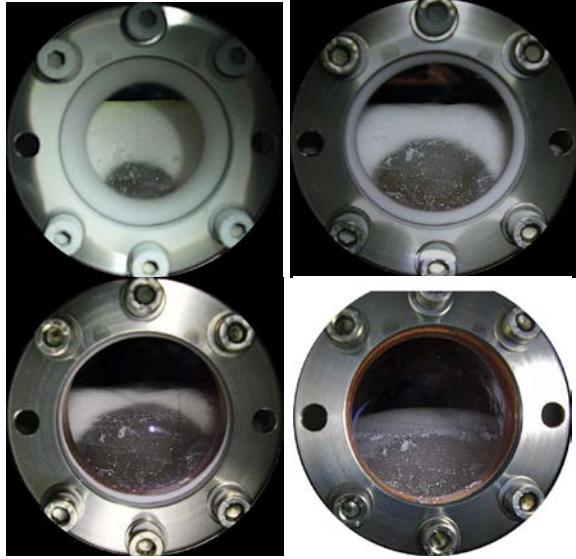


Figure 2: Progressive evolution of the slab after 13, 17, 21 and 43 days.

The slab is made of compact polycrystalline ice with rounded grains less than 1mm in size.

4. CO₂ condensation

In-situ formation of CO₂ ice was obtained by direct condensation under pure CO₂ atmosphere and a flow of about $\leq 6 \text{ cm}^3/\text{min}$, typical of Mars winter condensation rate. The progressive growth of a compact, transparent slab with large columnar grains (few mm wide) was observed. Its final thickness was 24 mm in 26 days.

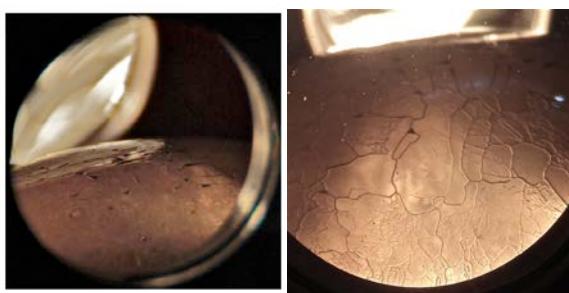


Figure 3: CO₂ slab formed by direct gas condensation.

When non-condensable gas (air) is injected in the cell the formation of transparent and compact ice stops

and coarse grained frost (few mm grains) starts to grow. After removal of the non-condensable gas CO₂ condense in the porosity of the frost and the slab formation restart.

Figure 4: coarse grained CO₂ frost formation under a non-condensable atmosphere

5. Thermal stresses

When subjected to thermal stresses the compact slabs cracks. Contraction generate random cracks, while dilatation trigger the opening of grain boundaries, thus strongly increasing the scattering behaviour of the slab.

Figure 5: effects of positive (left) and negative (right) thermal stresses on a CO₂ slab.

5. Application to Mars

These different formation and evolution processes can be applied to Mars observation to try to understand the formation and microphysical evolutions of CO₂ ice/snow on Mars during the various stage of condensation/sublimation of the seasonal deposits.

Acknowledgements

We acknowledge the French PNP programs and CNES for financial supports.

References

[1] Grisolle Florence 2013. PhD Thesis. ED Terre-Univers-Environnement, Université Joseph Fourier, Grenoble.