

Response of the Earth's thermosphere to interplanetary coronal mass ejections

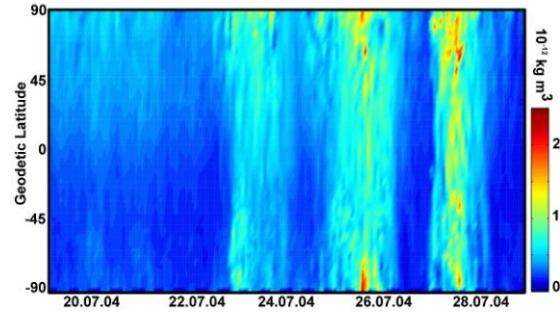
S. Krauss (1), M. Temmer (2), H. Lammer (1), A.M. Veronig (2), O. Baur (1), M. Pfleger (1), M.Y. Boudjada (1), M. Leitzinger (2) and B.P. Besser (1)

(1) Space Research Institute, Austrian Academy of Sciences, Graz, Austria (sandro.krauss@oeaw.ac.at)

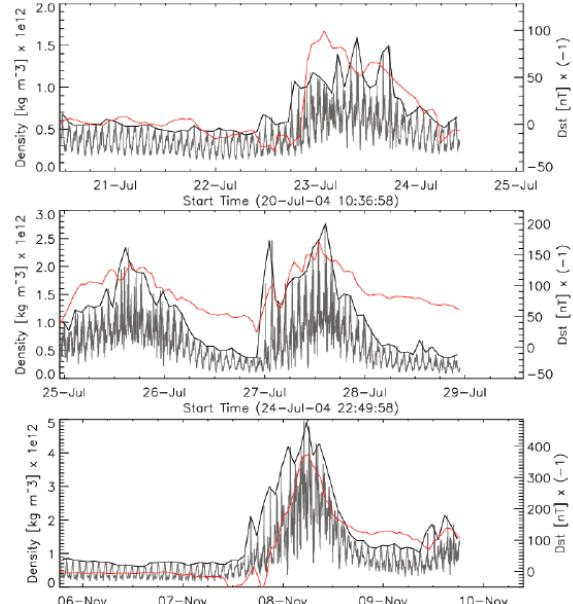
(2) University of Graz, Institute of Physics, IGAM Kanzelhöhe Observatory, Graz, Austria

Abstract

In this contribution we address the Earth's thermospheric response to interplanetary coronal mass ejections. We investigate several ICME events by means of neutral density measurements from the low-Earth orbiting satellites GRACE. Furthermore we correlate these observations with data from the ACE satellite located at L1 upstream of the Earth. By analyzing the data, high correlations between the neutral density and various combinations of ICME parameters can be found.


1. Motivation

Part of the solar wind energy supplied to the Earth's magnetosphere is deposited into the thermosphere via particle precipitation and Joule heating. During periods of high coronal mass ejection (CME) activity, short timescale (1-2 days) variations in the thermosphere are driven by magnetospheric energy input rather than by variations in the solar EUV flux (e.g., [2], [5]). We perform a statistical study based on GRACE satellite drag measurements during 2003-2010 to quantify the large-scale response of the thermospheric neutral density to the energy input by interplanetary CMEs (ICMEs).


2. Data and Methods

We studied the relationship between geomagnetic disturbances and thermospheric density by using accelerometer measurements by GRACE. After calibrating the raw observations, atmospheric neutral densities were deduced considering the effect of solar radiation pressure, horizontal winds and gas surface interactions [4]. During periods of geomagnetic disturbances the maximum of the signal is found at high latitudes (Fig.1). In the period July 23, 2003 - August 3, 2010 a total of 106 ICMEs measured in-situ at L1 upstream of Earth are listed in R&C [7]. In this presentation we focus on 20 events in which we

can also detect distinctive peaks in the neutral density of the Earth's upper atmosphere.

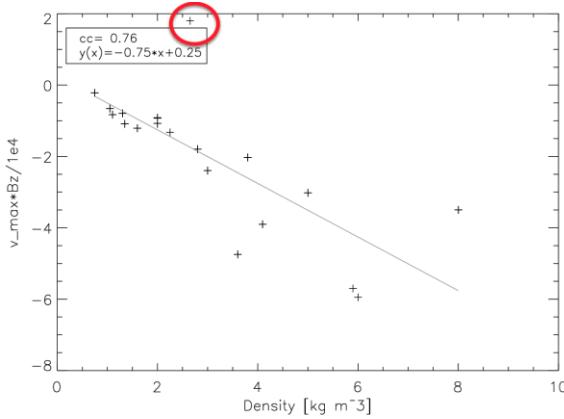

Figure 1: Neutral densities observed by GRACE during July 2004 – clearly visible the impact of 3 ICME's on the Earth's thermosphere.

Figure 2: Evolution of the Dst index [nT] (multiplied by -1; red line) and GRACE density measurements [$\text{kg m}^{-3} \times 10^{-12}$] black line.

3. Results and Conclusions

Figure 1 shows for a sub-sample of three events the temporal evolution of the Dst index and the associated density increase in the thermosphere. The profiles of Dst index and thermospheric density are very closely related. In order to compare different ICMEs characteristic with the neutral density we apply an envelope function to the GRACE signal to derive the maximum intensity per satellite revolution (black line in Fig.2). Subsequently, the highest correlation with the density is found for $v_{\text{max}}*B_z$ (with B_z the magnetic field in z-direction using GSE coordinates). Figure 3 shows a scatter plot of these two quantities, revealing a correlation of $cc=0.76$, which can be approximated by a linear relation.

Figure 3: Maximum thermospheric density against $v_{\text{max}}*B_z$.

About 20% of ICMEs arriving at the ACE satellite cause an increase of the neutral density in the Earth thermosphere. For these events, we obtain a high correlation between thermospheric density and geomagnetic activity index Dst (see e.g., case study by [1]). 17 out of the 20 analyzed ICME events show typical characteristics of magnetic clouds (MCs; [3]), including a smooth rotation of the magnetic field vector. With one exception (Oct. 24, 2003), all ICMEs causing a thermospheric density enhancement have a strong negative B_z component [6]. It turned out that the combined parameter $v_{\text{max}}*B_z$ has a higher correlation with the thermospheric density than the individual v_{max} and B_z parameters.

Acknowledgements

The authors acknowledge the Austrian Science Fund FWF V195-N16.

References

- [1] Bruinsma et al.: Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. *J. Geophys. Res.*, 111, 1–14, 2006.
- [2] Guo et al.: On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms. *J. Geophys. Res.*, 115, A12335, 2010.
- [3] Kilpua et al.: On the relationship between interplanetary coronal mass ejections and magnetic clouds. *Annales Geophysicae*, 31, 1251–1265, 2013.
- [4] Krauss et al.: Investigation on the Earth Ionosphere during extreme solar events based on two different observation methods, *Geophysical Research Abstracts*, 11, EGU2009-2120-2, 2009.
- [5] Krauss et al.: Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth’s upper atmosphere. *Annales Geophysicae*, 30, 1129–1141, 2012.
- [6] Liu et al.: Storm-time related mass density anomalies in the polar cap as observed by CHAMP, *Annales Geophysicae*, 28, 165–180, 2010.
- [7] Richardson and Cane: Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties, *Sol. Phy.*, 264, 189–237, doi: 10.1007/s11207-010-9568-6, 2010.