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Abstract

The  Moon  Zoo  citizen  science  project  [1]  allows 
members  of  the  public  to  annotate  lunar  images, 
providing researchers with a wealth of location and 
size  information  regarding  the  population  of  small 
craters  on  the  Moon.  To  date,  approximately  4 
million images have been inspected. Here, we show 
how a quantitative pattern recognition system can be 
used  to  estimate  the  quantity  of  contamination  in 
Moon  Zoo  data  from  erroneous  annotations.  The 
proposed method produces not only estimates of true 
verses false crater annotations, but also a full error 
covariance, with additional conformity checks, which 
is  essential  for  the  meaningful  interpretation  of 
measurements, e.g. for plotting error bars.

1. Introduction

The analysis of impact craters plays an important role 
in  chronological  studies  of  planetary  bodies,  yet 
annotating the location and size of impact craters is a 
time consuming and subjective activity. To mitigate 
against  this,  the  Moon Zoo project  brings  together 
large numbers of volunteers to identify lunar craters. 
Users  are  presented  with  images,  via  a  web-based 
interface  (www.moonzoo.org),  and  asked  to  place 
markers  around  visible  craters.  However,  mistakes 
are made, which introduces false positive annotations 
where  no  craters  actually  exist.  The  amount  of 
contamination  from  these  false  positives  must  be 
quantified in order  to calibrate  any Size-Frequency 
Distributions derived from Moon Zoo data.

The amount  of  contamination  can  be  estimated  by 
analysing the match scores returned when comparing 
a  template  crater  image  to  each  annotation.  It  was 
shown  in  the  associated  abstract  'Coalescence  and 
refinement of Moon Zoo crater annotations' that true 
and  false  annotations  had  distinctive  match  score 
distributions.  Linear  Poisson  Models  [2]  can  be 

applied to learn these distributions, then fit them to 
future data to perform the estimation.

40,000+  Moon  Zoo  annotations  from  around  the 
Apollo  17  site  (NASA's  Lunar  Reconnaissance 
Orbiter  images  M104311715LE  and 
M104311715RE) are used to test the method.

2. Methodology

The  false  positive  quantification  process  involves: 
learning, through example, the distribution of match 
scores for true and false annotations; a detailed error 
theory which computes measurement covariances via 
the  application  of  error  propagation;  and  a  model 
conformity check using a chi-squared per degree of 
freedom test.

Figure 1: Left, mean grey level crater template 
(Grey); right, derivative (x and y) template (Grad).

2.1 False positive quantification

Two  alternative  crater  templates  and  two  match 
scores are investigated. The templates include a grey 
scale  template  (Grey)  and  a  derivative  template 
(Grad). Examples of these can be seen in Figure 1. 
The match scores include a dot-product (DP) and a 
mean  square  error  (MSE)  function.  For  all 
combinations,  the  distribution  of  match  scores  for 
example true and false annotations are sampled into 
histograms.  Linear  models  of  the  resulting 
distributions are  then  trained  using  an  Independent 
Component Analysis, based upon Likelihood, which 
is  optimised  using  an  Expectation  Maximisation 
(EM) algorithm.
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After training, the linear models can be fitted, using 
EM, to new unseen data. The weighting parameters 
returned from the fit are proportional to the amount 
of  each  class  present  in  the  data,  and  thus  give  a 
measurement of false verses true annotations.

2.2 Measurement covariances

The  stability  of  the  estimates  are  computed  by 
considering how noise in training data and noise in 
incoming data  affects  model  weighting  parameters. 
This  is  done  via  error  propagation  [3]  which 
approximates  measurement  perturbations  by 
computing  the  derivatives  of  model  weights  with 
respect to the sources of error. The sources of error 
are  assumed  to  be  independent  Poisson  sampling 
noise in training and testing histogram bins.

2.3 Conformity check

Problems  with  an  analysis  (e.g.  outliers  in  data  or 
images with atypical craters) can be spotted using a 
chi-squared per degree of freedom function [3]. The 
residuals  between  modelled  and  observed 
histograms,  which  are  Poisson,  can  be  made 
approximately  Gaussian  with  a  square-root 
transform, then a standard chi-squared per degree of 
freedom test can be applied.

Figure 2: Agreement between predicted measurement 
accuracies and those achieved in practice.

3. Results

The 40,000+ Moon Zoo annotations were used to test 
the method, with repeated sampling with replacement 
used  to  confirm  that  the  repeatability  of 
measurements  was  correctly  predicted  by  the  error 
covariances.  A  known  quantity  of  true  and  false 
annotations were included within each trial, allowing 
estimates  to  be compared against  ground truth.  On 

each trial a different quantity of training and testing 
data  was  used,  and  the  empirical  spread  of 
measurements was compared against those predicted 
by the error covariance estimates. Figure 2 shows the 
ratio of the observed to predicted measurement errors 
(which  should  always  be  unity),  corroborating  the 
validity of the method. Figure 3 shows the level of 
accuracy attainable in estimating the quantity of true 
and false positive annotations.

Figure  3:  Measurement  accuracies  attainable  when 
quantifying true and false annotations.

4. Summary and Conclusions

As seen in Figure 2, all combinations of template and 
match  score  allowed  repeated  measurements  to  be 
made with accuracies correctly predicted by the error 
theory, i.e. ratio of unity. Figure 3 shows that the best 
estimates of true verses false positives are achieved 
using  a  dot  product  type  match  score,  with 
measurement errors typically better than 5%.
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