EPSC Abstracts Vol. 9, EPSC2014-773, 2014 European Planetary Science Congress 2014 © Author(s) 2014

Topside ionosphere irregularities of equatorial origin

Larisa Sidorova, Sergey Filippov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio wave propagation of Russian Academy of Sciences (IZMIRAN), Moscow, Troitsk, Russia (Isid@izmiran.ru)

Abstract

The question about an opportunity to detect the topside plasma bubbles of equatorial origin in their separate plasma component (He⁺) is investigated. There are the indications [1, 2, 3] that there is genetic connection between the He⁺ density depletions and the equatorial plasma bubbles. For validation of this idea the characteristic times of the photochemical and electro-dynamical processes, in which the plasma bubbles and their minor ion component (He⁺) are involved, have been calculated and compared. He⁺ density depletions are usually detected in the topside ionosphere (~1000 km) deeply inside the plasmasphere (L~1.3-3). The model estimations, obtained in SAMIS3 (3D model of equatorial spread F) and kindly presented by J. Huba (USA) [4], are also used for the investigation. It was revealed that the plasma bubbles, reaching the "ceiling" heights, can exist within 10÷13 hours and that there is principal opportunity to observe them in the separate plasma component (He⁺).

References

- [1] Sidorova, L.N., He+ density topside modeling based on ISS-b satellite data, Adv. Space Res., 33, 850-854, 2004.
- [2] Sidorova, L.N. Plasma bubble phenomenon in the topside ionosphere, Adv. Space Res., Special issue (COSPAR), doi: 10.1016/j.asr.2007.03.067, 2007.
- [3] Sidorova, L.N., Filippov, S.V., 2012. Topside ionosphere He+ density depletions: seasonal/longitudinal occurrence probability. Journal of Atmospheric and Solar-Terrestrial Physics 86, 83–91, http://dx.doi.org/10.1016/j.jastp.2012.06.013.
- [4] Huba, J.D., Joyce, G., Krall, J., 2008. Three-dimensional equatorial spread F modeling. Geophysical Research Letters 35, L10102, http://dx.doi.org/10.1029/2008GL033509.

Acknowledgements

This work was supported by the RFBR grant N_0 13-05-12111.