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Abstract

Our Moon is one of the most studied objects in the
Solar system; we benefit from chemical, geophysi-
cal, and geodetical observations achieved by multi-
ple Earth ground based telescopes and in situ mis-
sions. However, the dissipation law remains a puzzle
because the power law determined through the Lunar
Laser Ranging measurements [8], [9] has a slope of
opposite sign to the one obtained in rheological mod-
els (e.g. [5]). Here, we explore causes of dissipation
in the Moon to obtain a full agreement between LLR
observations and rheological models.

1. Introduction

The Gravity Recovery and Interior Laboratory mis-
sion (GRAIL) yielded highly accurate gravity mea-
surements that have allowed the refinement of the lu-
nar crust and geological evolution as well as the deter-
mination of key geophysical parameters, such as the
tidal Love numbers of degree 2 and 3 [3], [4]. Com-
bined with the rotational data of the continuing Lunar
Laser Ranging measurements the lunar dissipation law
can be inferred [8], [9]. We attack this problem by
using a forward modeling approach of the dissipative
Moon to infer the physical interior lunar properties ca-
pable to match the observational constraints.

2. LLR Observations

Periodic deformation of the Moon can be derived from
ground-based laser ranging and that technique (LLR)
has significantly contributed to lunar science and to
the knowledge of the Earth-Moon system for the past
40 years (e.g [2]). A major result is the early detec-
tion of the signature of a fluid core due to its impact
on the direction of the spin axis [8]. Notably, a fluid
core does not exactly follow the motion of the mantle,
which induces a torque and dissipates energy. The de-
termination of phase shifts in the spin axis orientation
and in several periodic libration terms allow separating

the tidal and fluid core contributions to the observed
tidal response [8]. The energy dissipation is quantified
through a factor () that depends on the excitation fre-
quency (e.g., [8]; [9]). In the case of the Moon that
dissipation is expressed as [8]:

Q=Qr (;) (1)

where F' is the draconic month frequency (node to
node) such that F' = 27 /27.212 days, and w is the
tidal frequency and the power dependence is w. The
interpretation of dissipation factors inferred from LLR
observations have led to the inference of a negative
power law with w = —0.19 +0.13 and Qr = 37+ 6
([8]). Updated analysis from [9] leads to similar re-
sults. The peculiar negative power law has remained
unexplained to date (e.g. [5]).

3. GRAIL data

The space mission Gravity Recovery and Interior Lab-
oratory mission (GRAIL) has determined the gravity
field of the Moon at an unprecedented accuracy ([10],
[3], [4]). The lunar gravity field has been obtained
with an improved accuracy of 4-5 order of magnitude
up to degree and order 660 in spherical harmonics
([3]). In addition, the love number k5 has been im-
proved by a factor 5 and has been determined to be
equal to 0.02405 + 0.00018. Such great accuracy is
reached thanks to a mission concept similar to GRACE
and the use of a Ka-band transponder instead of S-
band transponder (see [10]).

4. Interior model

We follow a forward approach where the tidal response
of a multilayered interior model is solved to assess
the compliance and the complex Love number k5 ([6];
[1]). The interior density profile comes from the seis-
mic analysis of [7]. The density and seismic veloci-
ties profiles have been obtained by re-processing the



seismic data from the Apollo missions through mod-
ern techniques. Their analysis supports the presence
of a molten boundary region with a thickness of about
150 km, overlaying a fluid core layer at R = 330 km
radius as well as the presence of a solid inner core.

5. Results

We explore a large set of rheological parameters rep-
resented by the Andrade model that can fit the rota-
tion and ko measurements. As preliminary results,
we found that typical successful model is character-
ized by a significant decrease in viscosity at a radius
of about 490-510 km. The depth at which that con-
trast is found is consistent with the [7] seismic obser-
vations and our dissipative model seems to reproduce
the dissipation behavior inferred from LLR and k9 de-
termined by GRAIL.
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