

Planetary GIS and EuroPlanet-RI H2020

A. P. Rossi (1), B. Cecconi, (2) N. Manaud (3), S. Erard (2), C. Marmo (4)
(1) Jacobs University Bremen, Germany (2) LESIA, Observatoire de Paris/CNRS/UPMC/Univ. Paris-Diderot, France, (3)
ESA ESAC PSA, Madrid, Spain, (4) GEOPS, Université Paris-Sud, France (an.rossi@jacobs-university.de))

Geographic Information System (GIS) practice and applications within Planetary Science became in the last decade a major component for studying solid surfaces of Solar System bodies [e.g. 1,2,3]: from earlier mainly Mars-focused efforts limited to few datasets, the availability of high-quality spatial data grew enormously and its accessibility is also enhanced by the use of OGC web standards.

Higher-level, calibrated georeferenced datasets are the prime target for geologic and related thematic mapping [e.g. 4], although the communities potentially benefiting from a GIS-based approach are beyond and they include most closely Atmospheric science, as well as Magnetospheric and Plasma Physics, to quote only few.

In the upcoming EuroPlanet-RI H2020 project Planetary GIS efforts are embedded within the VESPA activity [5] and they allow for a tight integration of OGC and VO-based tools and interfaces [6].

Nowadays GIS-based analyses are used for carrying out research tasks and systematic mapping on planetary bodies, but also for a wide range of analyses related [e.g. 7] to landing site selection, ranging from scientific merit to safety [e.g.8]

Community building is a key part of VESPA [5], but also independently followed by other actors like ESA PSA [9]. Recently a workshop on Planetary GIS in broad sense and with particular reference to ESA data archives has been organized [10]. Such workshop has been strongly supported by ESA and the broad planetary community, both directly and through its official channel for Planetary Science archive science access and exploitation-related needs, the PSA User Group [11]. Its outcomes, also in terms of use case development, might be instrumental to VESPA GIS/VO future activities.

References

- [1] Hare, T. M., et al. GIS 101 for planetary research. ISPRS. Extraterrestrial Mapping Workshop "Advances in Planetary Mapping. 2003.
- [2] Van Gasselt, S., and A. Nass: Planetary mapping—The datamodel's perspective and GIS framework." PSS 59, no. 11. p 1231-1242, 2011
- [3] Frigeri, A., et al.: working environment for digital planetary data processing and mapping using ISIS and GRASS GIS." PSS 59.11, p. 1265-1272. 2011.
- [4] Pondrelli M., et al., Planetary and Space Science, Volume 59, 11–12,b, Page 1113, DOI:10.1016/j.pss.2011.07.006.
- [5] Erard et al., VESPA: Developing the Planetary Science Virtual Observatory in H2020, this meeting.
- [6] Rossi, A. P., et al. "Planetary GIS interfaces and links with the Planetary Virtual Observatory." EPSC 2014, #EPSC2014-586, 2014.
- [7] Pacifici, A., et al.: Geological and Geomorphological Map of ExoMars 2016 Landing Site. LPSC XLV, # 1777 2014.
- [8] Beyer, Ross A., and Randolph L. Kirk. "Meter-scale slopes of candidate MSL landing sites from point photocalinometry." SSR 170.1-4, p. 775-791, 2012.
- [9] Heather, D., et al.: ESA's Planetary Science Archive: Status, Activities and Plans. In European Planetary Science Congress, , id. EPSC2013-626 (Vol. 8, p. 626), 2013.
- [10] McAuliffe, J., et al.: The First European Planetary GIS Workshop: Outcome and Lessons Learnt, this meeting.
- [11] Rossi, A. P., et al.: "The ESA Planetary Science Archive User Group (PSA-UG)." European Planetary Science Congress 2014, EPSC Abstracts, Vol. 9, id. EPSC2014-435. Vol. 9. 2014.