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Abstract

The displacement of a celestial body’s rotational axis
with respect to its surface feature, or true polar wander
(TPW) is studied in this paper and a numerical method
is established which can deal with laterally heteroge-
neous models. This method is validated by comparing
the numerical results with the analytical results which
are developed based on normal mode theory. The re-
sults show good agreement. A further study of the
TPW on Mars with a model which contains varying
mantle viscosity is being conducted with the estab-
lished numerical method.

1. Introduction

Analytically, the dynamics of polar wander is gov-
erned by two equations. Firstly, Liouville equation
gives the general dynamics of a rotational body. When
no external torque is applied, it reads % (I w)+wxI-
w = 0, where I is the inertia tensor and w is the angu-
lar velocity vector. Both values are defined in a body
fixed coordinate system. The analytical approach re-
quires another equation which describes the moment
of inertia I. As the moment of inertia is perturbed by
a geophysical process,the mass within the body redis-
tributes and as the rotation axis changes, so the altered
centrifugal force also deforms the rotational body. The
total moment of Inertia attributable to such process is
given by [1]
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Where [ is the moment of inertia of the homogeneous
spherical body, G is the gravitational constant. k7 ()
and k% (t) are the degree 2 tidal love number and load
love number respectively. C;; represents the change
in the moment of inertia without considering the dy-
namic deformation and it is this value that triggers the
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polar wander. The second and third term in Equation 1
stands for the changes which derive from the perturbed
centrifugal force and from the mass redistribution in-
duced by the triggering load respectively.

The analytical approach contains two major restric-
tions: First, the love numbers k7' (¢) and k¥(t) can
generally only be obtained for a homogeneous model.
Secondly certain assumptions which simplify Equa-
tion 1 in the frequency domain are required so that it
can be analytically solved together with the Liouville
equation. However, these assumptions may not be true
for other celestial bodies other than Earth. As a re-
sult, it is necessary to seek a numerical approach with
which a general laterally heterogeneous planet can be
studied.

2 Methodology

2.1 Numerical solutions of Liouville
equation

First, we show that with the information about change
in the moment of inertia, Liouville equation can be
solved numerically with iterations. For a small enough
time step, we assume that the change of moment of
inertia varies linearly and by linear theory, Liouville
equation leads to
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with angular velocity defined as w = Q(mq, mo, 1 +
ms). In each step, the polar wander m;(t) is given
an initial estimate and then the correspondent change
of moment of inertia is computed from Equation 1.
This value is then fed into Equation 2 to obtain the
new m;(t) and the iteration continues until the result
converges. The comparison between this numerical



method and the analytical one from [3] is shown in
Figure 1.
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Figure 1: The polar wander path of two Earth models
triggered by a point mass of 2 x 10'%kg placed at 45°
colatitude in x-z plane. Lines shows the analytical(A)
results and symbols represents the numerical (N) ones.

2.2 Finite element approach for change
of moment of inertia

Next, we show that the change of moment of inertia
can be numerically calculated instead of using Equa-
tion 1. [2] provides a finite element(FE) solution
for calculating gravitationally self-consistent layered
model by coupling the gravity term into the rheology
equation through iterations. With information in the
radius deformation, the change of moment of inertia
for each layer can be calculated from

AL p o~ /S(pi+1 — pi)(reredi; — rirj)urdS  (3)

where p; are densities of different layers and w,. is the
radius displacement. When polar wander history is
given and only the centrifugal force is considered for
the laterally homogeneous model, the comparison be-
tween the analytical and FE results for calculating the
change in moment of inertia is given in Figure 2.

For the theoretical non-zero components
I11, 152, I33, and Iy3. The numerical result shows
good correspondence with the analytical result.
Theoretically, 12 and I23 should be zero. The results
obtained from numerical methods have magnitudes
which are about 4th order lower than the other four.
These values represent the numerical errors which are
estimated be around 0.1 %.
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Figure 2: Change in moment of inertia for a two-layer
Earth model with rotation axis linearly drifting from
0° to 45° within « — z plane in 5 thousand years. The
model is initially an unloaded sphere.

3 Conclusion

The governing equations for the polar wander are
solved numerically and the change in the moment of
inertia which is analytically calculated by Equation 1
can be obtained directly from a finite element model.
Together, a numerical approach which can deal with
laterally heterogeneous planet model is developed.
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