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Abstract

Tidal evolution of planetary orbit and rotation has been
traditionally described using specific rheological as-
sumptions: constant phase lag [1] or constant time
lag [2]. Such rheologies are, however, unsuitable in
the case of terrestrial bodies described by realistic vis-
cosity and rigidity (e.g. [3]), as they predict stable
pseudo-synchronous, non-resonant rotation of planets
on eccentric orbit, which is not observed in the nature
(planetary satellites in the Solar system, planet Mer-
cury). Several authors have recently proposed analyti-
cal treatment of orbital evolution with the assumption
of a viscoelastic rheology ([3], [4]). Here, we present
a numerical approach to the problem and we study the
effects of viscosity pattern on the rate of tidal dissipa-
tion.

1. Introduction and methods

Unperturbed system of two spherically symmetric
bodies maintains constant orbital parameters, deter-
mined uniquely by the solution of a two-body prob-
lem. The orbital evolution can emerge only when a
perturbation is introduced into the system. Such per-
turbation arises, in our case, as a result of tidal defor-
mation of the planet, breaking off its spherical symme-
try.

We therefore first investigate the deformation of a
planetary mantle undergoing tidal loading by a host
star. The mantle is represented by a viscoelastic
Maxwell-like spherical shell and its response to the
loading force f is computed in the time domain as a
solution of governing equations

Vou=0, (1)
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where u is the displacement vector, 7 and D represent
the isotropic and the deviatoric part of the stress ten-
sor, 1 is the effective shear modulus and 7 the effective
viscosity [5]. The force f consist of two contributions:
the first one due to the external potential and the sec-
ond one due to the self-gravity of a deformed planet.
We solve the equations using a spherical harmonic de-
composition in the lateral direction and a staggered fi-
nite difference method in the radial direction [6].

The mass excess or deficit due to the boundary de-
flections of a deformed shell enables us to compute
the disturbation of the external field. The disturbing
force fy;s¢ is evaluated in the instantaneous position of
a host star and decomposed into three orthogonal com-
ponents: R in the direction of radius vector, S perpen-
dicular to R in the orbital plane, pointing in the direc-
tion of planetary motion, and W perpendicular to the
orbital plane, pointing in the direction of orbital an-
gular momentum. Perturbation of the planetary orbit
for a system containing one star and one planet is then
computed using Gauss planetary equations:
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Here a and e symbolize the semi-major axis and the
eccentricity, respectively, n is the mean motion of
the planet, v the true anomaly, r represents the in-
stantaneous distance of the planet from the star, p =
a(1 — €?) is the semi-latus rectum and R, S are the
magnitudes of the first two components of the disturb-
ing (tidal) force.

Once we know the average values of secular change
in a and e, we compute the long-term orbital evolu-
tion explicitly. The rotational period €2 of a spherical
planet with the moment of inertia C' evolves in agree-
ment with the conservation of total angular momentum



of the system.
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2. Spin-orbit resonances

Study of the long-term evolution of any planetary pro-
cesses depending on the surface temperature and/or
tidal loading requires realistic model for the orbital
evolution. Locking of a planet into a spin-orbit res-
onance results in insolation and temperature pattern
that is qualitatively different from that of pseudo-
synchronous state.

Figure 1 shows stable spin-orbit ratios for a close-
in terrestrial planet with various values of eccentric-
ity and effective viscosity (note that the effective vis-
cosity for tidal deformation is lower than the viscosity
used in mantle convection models—the mean effective
viscosity of the Earth mantle would be ~ 108 Pa.s).
The results demonstrate that while for some values of
viscosity 7 and Maxwell time 7y = g the equillib-
rium rotation state is well described by the constant
time lag model (purely viscous or elastic limit), other
Maxwell bodies tend to get locked into spin-orbit reso-
nance. The upper left plot of Figure 1 depicts an inter-
mediate state between discrete spin-orbit resonances
and pseudo-synchronous rotation, a result for a vis-
coelastic planet with very low viscosity.

3. Summary and Conclusions

We have implemented a numerical model for the or-
bital and rotational evolution of viscoelastic planets
and studied parameter dependence of tidal dissipation
and stable spin-orbit ratios, including resonances. The
model enables evaluation of effects of the internal vis-
cosity structure of the planet and may be useful in fur-
ther studies of coupled internal and orbital evolution.
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Figure 1: Stable spin-orbit ratios as a function of

eccentricity for different values of effective viscos-
ity. Comparison with traditional models: CTL = con-
stant time lag, CPL = constant phase lag. Earth-like
planet orbiting Sun-like star, a = 0.055 AU, T, =
4.71 days, p = 2.10'! Pa.
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