

3D DSMC Modeling of the Coma of Comet 67P/Churyumov-Gerasimenko Observed by the VIRTIS and ROSINA instruments

N. Fougere (1), M. R. Combi (1), V. Tenishev (1), A. Bieler (1), G. Toth (1), Z. Huang (1), T. I. Gombosi (1), K. C. Hansen (1), F. Capaccioni (2), G. Filacchione (2), A. Migliorini (2), D. Bockelée-Morvan (3), V. Debout (3), S. Erard (3), C. Leyrat (3), U. Fink (4), M. Rubin (5), K. Altwege (5), C.-Y. Tzou (5), L. Le Roy (5), J.-J. Berthelier (2), H. Reme (6), M. Hässig (7), S. Fuselier (7), B. Fiethe (8), J. De Keyser (9), the VIRTIS Science team, and the ROSINA Science team
(1) Department of Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, MI, United States
(2) Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy
(3) Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris/CNRS/Université Pierre et Marie Curie/Université Paris-Diderot, Meudon, France
(4) Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
(5) Physikalisch Institut, University of Bern, Bern, Switzerland
(6) Institut de Recherche en Astrophysique et Planétologie, UPS, Université de Toulouse et CNRS, Toulouse, France
(7) Southwest Research Institute, San Antonio, TX, USA
(8) Institute of Computer and Network Engineering, TU Braunschweig, Braunschweig, Germany
(9) Belgian Institute for Space Aeronomy (BISA), Brussels, Belgium

1. Introduction

Since its rendez-vous with comet 67P/Churyumov-Gerasimenko (CG), the Rosetta spacecraft has provided invaluable information contributing to our understanding of the cometary environment. On board, the VIRTIS and ROSINA instruments can both measure gas parameters in the rarefied cometary atmosphere, the coma, and provide complementary results with remote sensing and in-situ measurements, respectively.

The use of a numerical model is a way to correlate the information provided by both VIRTIS and ROSINA to fully understand the volatile environment of comet CG. To describe the entire coma including the regions where collisions cannot maintain the flow in a fluid regime, the use of a kinetic method is necessary. Here, the Direct Simulation Monte-Carlo (DSMC) approach is applied to the cometary coma to solve the Boltzmann equation [1] using the Adaptive Mesh Particle Simulator (AMPS) code [2], [3], [4], [5], and then compared with VIRTIS and ROSINA data.

2. Description of the model

During its journey in the Solar System, as the comet gets within a few astronomical units of the Sun, solar heating liberates gases and dust from its icy nucleus

forming the coma. The model boundary conditions are then based on the local solar illumination. The complex shape of the nucleus of comet CG, here based on SHAP5 from the OSIRIS team, requires taking into account self-shadowing. The temperature at the inner boundary is based on the thermophysical model from [6], [7], [8], while the gas flux is constrained by ROSINA measurements and driven by the angle between the normal of each surface element with the solar direction. This model was shown to have a good agreement with both ROSINA [9] and VIRTIS-H [10] data. Progress comparing the model with VIRTIS and ROSINA data is described. This comparison provides a better global understanding of the gas coma of comet CG.

Acknowledgements

This work was supported by contracts JPL#1266313 and JPL#1266314 from the US Rosetta Project and NASA grant NNX09AB59G from the Planetary Atmospheres Program. Work at UoB was funded by the State of Bern, the Swiss National Science Foundation and by the European Space Agency PRODEX Program. Work at Southwest Research Institute was supported by subcontract #1496541 from the Jet Propulsion Laboratory. Work at BIRA-IASB was supported by the Belgian Science Policy Office via

ROSINA would not give such outstanding results without the work of the many engineers, technicians, and scientists involved in the mission, in the Rosetta spacecraft, and in the ROSINA instrument team over the last 20 years whose contributions are gratefully acknowledged.

The authors would like to thank ASI - Italy, CNES - France, DLR - Germany, NASA-USA for supporting this research. VIRTIS was built by a consortium formed by Italy, France and Germany, under the scientific responsibility of the Istituto di Astrofisica e Planetologia Spaziali of INAF, Italy, which guides also the scientific operations. The consortium includes also the Laboratoire d'études spatiales et d'instrumentation en astrophysique of the Observatoire de Paris, France, and the Institut für Planetenforschung of DLR, Germany. The authors wish to thank the Rosetta Science Ground Segment and the Rosetta Mission Operations Centre for their continuous support.

References

- [1] M.R. Combi (1996) Icarus, 123, 207.
- [2] V. Tenishev et al. (2011) ApJ, 732:104.
- [3] V. Tenishev et al. (2013) Icarus, 226, 1538.
- [4] N. Fougere et al. (2013) Icarus, 225, 688.
- [5] N. Fougere (2014) PhD Thesis, University of Michigan.
- [6] B.J.B Davidsson & P. Gutiérrez (2004) Icarus, 168, 392.
- [7] B.J.B Davidsson & P. Gutiérrez (2005) Icarus, 176, 453.
- [8] B.J.B Davidsson & P. Gutiérrez (2004) Icarus, 180, 224.
- [9] A. Bieler et al. (2015), A&A, submitted.
- [10] D. Bockelée-Morvan et al. (2015), A&A, submitted.