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Abstract 
A comparison of Principal Components Analysis and 
Independent Components Analysis is made in the 
context of imaging spectroscopy of the Solar System 
bodies. Specific behaviors are outlined and explained, 
using examples from recent space-borne experiments 
and telescopic observations. ICA is in general a much 
more efficient tool to analyze spectral data cubes. 

1. Introduction 
Imaging spectroscopy has become a major tool to 
study both the terrestrial environment and planetary 
surfaces and atmospheres. The data consists in 3D 
spectral cubes providing a reflectance spectrum of 
each pixel on the target, usually a small surface area. 
They provide limited resolution imaging but detailed 
spectral, and therefore compositional, information.  

Altogether, spectral data cubes are very strongly 
correlated datasets in which significant compositional 
contrasts translate as small differences in variance. 
The data analysis strategy often consists in 
identifying both the big oppositions and special but 
very localized signatures. The latter are usually small 
(∼1% reflectance) and localized in a few spectral 
channels and few spatial pixels. Since they are 
superimposed on large variations of albedo affecting 
all channels, they represent a very small share of the 
total variance and are difficult to evidence. Since 
modern space experiments generate very large 
datasets (∼1Gb / day for several years), efficient 
automated data analysis techniques are now required 
to process these observations. 

2. Data model  
The signal measured on a planetary surface can be 
described as a linear mixture of the spectra of the 

main units (end-members), combined with 
uncorrected instrumental effects and noise. In this 
model, the endmembers are assumed to be 
representative of large units with common spectral 
properties covering at least some pixels at the 
surface. For this reason, endmembers are assumed to 
represent geological terrains and associations of 
minerals (rocks), not the mineral themselves which 
do not combine linearly at small scale. In the case of 
Mars or Titan, atmospheric signatures are also 
expected to contribute to the signal. This model can 
be written as: 

D = AS + B 

where D is the data array (N pixels × P channels), S 
are the endmembers (M spectral sources × P), A is 
the mixing coefficients matrix (N × M), and B is the 
noise. The spectra of the N pixels can be seen either 
as observables (physical point of view) or variables 
(statistical point of view). 

Some tools have been extensively used to identify 
such end-member components in data cubes, in 
particular linear mixing methods and Principal 
Components Analysis (PCA). In these cases, the data 
cubes are reduced to simple 2D data arrays — the 
spectra are analyzed independently, with no 
consideration for spatial proximity between pixels. 
PCA is based on variance analysis and is easily 
applied to spectral cubes. However, PCA has long 
been known to provide limited-accuracy results in 
this context.  

Conversely, ACI is aiming at identifying a set of 
statistically independent components, i.e., such that 
their marginal probability distribution functions are 
separable. This is done in three steps: first, the 
variables are decorrelated with a PCA; second, the 
array of the main M components is normalized 
(whitening step); third, the components are rotated 
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along the independent directions. Following the 
central limit theorem, this last step is performed by 
looking for the direction of maximum departure from 
Gaussianity. The remaining subspace is then 
analyzed similarly. A convenient algorithm for this 
step is JADE, which is based on joint diagonalization 
of the fourth order cumulant tensor. Because of the 
whitening step the resulting components are no 
longer constrained to be orthogonal in the variables 
space, which helps separating overlapping signatures. 
This is done at the expense of the knowledge of their 
sign and magnitude. JADE scales the components to 
unit variance, and order them according to the non-
Gaussianity parameter, i.e., to the level of 
heterogeneity they introduce in the dataset.  

With both PCA and ICA, the spectral components 
allow the study of endmembers composition, while 
the coefficients can be mapped to estimate their 
spatial distribution. 

4. Comparisons 
Applications related to VIRTIS / Rosetta, VIRTIS / 
Venus-Express [1], OMEGA/Mars-Express [2,3], 
and adaptive optics observations of Mercury [4] and 
Ceres will be discussed.  

Three major limitations often affect PCA results: 1) 
overlapping spectral features are not easily separated, 
because PCA looks for orthogonal components; 2) 
this situation is enforced when spectral parameters 
have similar variance, in which case they are not 
separated; 3) noise is never distinguished from 
signal, which commonly results in noisy components 
dominating more structured ones. 

ICA does not present these limitations: separation of 
overlapping signatures or parameters of similar 
variance is more efficient because there is no 
orthogonality constraint; additive Gaussian noise is 
clearly separated from the signal, which makes ICA 
much more robust to random noise in this context. 
Altogether, the results of ICA are easier to interpret 
because independent components are closer to 
physical associations of variables than principal 
components, and minor signatures are more readily 
identified from the heterogeneity they introduce in a 
dataset. 
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