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Abstract

A comparison of Principal Components Analysis and
Independent Components Analysis is made in the
context of imaging spectroscopy of the Solar System
bodies. Specific behaviors are outlined and explained,
using examples from recent space-borne experiments
and telescopic observations. ICA is in general a much
more efficient tool to analyze spectral data cubes.

1. Introduction

Imaging spectroscopy has become a major tool to
study both the terrestrial environment and planetary
surfaces and atmospheres. The data consists in 3D
spectral cubes providing a reflectance spectrum of
each pixel on the target, usually a small surface area.
They provide limited resolution imaging but detailed
spectral, and therefore compositional, information.

Altogether, spectral data cubes are very strongly
correlated datasets in which significant compositional
contrasts translate as small differences in variance.
The data analysis strategy often consists in
identifying both the big oppositions and special but
very localized signatures. The latter are usually small
(~1% reflectance) and localized in a few spectral
channels and few spatial pixels. Since they are
superimposed on large variations of albedo affecting
all channels, they represent a very small share of the
total variance and are difficult to evidence. Since
modern space experiments generate very large
datasets (~1Gb / day for several years), efficient
automated data analysis techniques are now required
to process these observations.

2. Data model

The signal measured on a planetary surface can be
described as a linear mixture of the spectra of the

main units (end-members), combined with
uncorrected instrumental effects and noise. In this
model, the endmembers are assumed to be
representative of large units with common spectral
properties covering at least some pixels at the
surface. For this reason, endmembers are assumed to
represent geological terrains and associations of
minerals (rocks), not the mineral themselves which
do not combine linearly at small scale. In the case of
Mars or Titan, atmospheric signatures are also
expected to contribute to the signal. This model can
be written as:

D=AS+B

where D is the data array (N pixels x P channels), S
are the endmembers (M spectral sources x P), A is
the mixing coefficients matrix (N x M), and B is the
noise. The spectra of the N pixels can be seen either
as observables (physical point of view) or variables
(statistical point of view).

Some tools have been extensively used to identify
such end-member components in data cubes, in
particular linear mixing methods and Principal
Components Analysis (PCA). In these cases, the data
cubes are reduced to simple 2D data arrays — the
spectra are analyzed independently, with no
consideration for spatial proximity between pixels.
PCA is based on variance analysis and is easily
applied to spectral cubes. However, PCA has long
been known to provide limited-accuracy results in
this context.

Conversely, ACI is aiming at identifying a set of
statistically independent components, i.e., such that
their marginal probability distribution functions are
separable. This is done in three steps: first, the
variables are decorrelated with a PCA; second, the
array of the main M components is normalized
(whitening step): third. the components are rotated



along the independent directions. Following the
central limit theorem, this last step is performed by
looking for the direction of maximum departure from
Gaussianity. The remaining subspace is then
analyzed similarly. A convenient algorithm for this
step is JADE, which is based on joint diagonalization
of the fourth order cumulant tensor. Because of the
whitening step the resulting components are no
longer constrained to be orthogonal in the variables
space, which helps separating overlapping signatures.
This is done at the expense of the knowledge of their
sign and magnitude. JADE scales the components to
unit variance, and order them according to the non-
Gaussianity parameter, ie., to the level of
heterogeneity they introduce in the dataset.

With both PCA and ICA, the spectral components
allow the study of endmembers composition, while
the coefficients can be mapped to estimate their
spatial distribution.

4. Comparisons

Applications related to VIRTIS / Rosetta, VIRTIS /
Venus-Express [1], OMEGA/Mars-Express [2,3],
and adaptive optics observations of Mercury [4] and
Ceres will be discussed.

Three major limitations often affect PCA results: 1)
overlapping spectral features are not easily separated,
because PCA looks for orthogonal components; 2)
this situation is enforced when spectral parameters
have similar variance, in which case they are not
separated; 3) noise is never distinguished from
signal, which commonly results in noisy components
dominating more structured ones.

ICA does not present these limitations: separation of
overlapping signatures or parameters of similar
variance is more efficient because there is no
orthogonality constraint; additive Gaussian noise is
clearly separated from the signal, which makes ICA
much more robust to random noise in this context.
Altogether, the results of ICA are easier to interpret
because independent components are closer to
physical associations of variables than principal
components, and minor signatures are more readily
identified from the heterogeneity they introduce in a
dataset.
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