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Abstract

The 14N/15N ratio for HCN in the atmosphere of Ti-
tan has been measured to be 2 to 3 times as less as
the corresponding ratio for N2. Using a coupled ion-
neutral photochemical model incorporating state-of-
the-art chemistry and cross-sections for N2, we show
that the difference in the ratio of 14N/15N between
HCN and N2 can be explained exclusively by the
photo-induced isotopic fractionation of 14N14N and
14N15N, without any further putative nitrogen input.

1 Introduction

The 14N/15N ratio has now been retrieved in N2 as well
as in HCN. A summary of the available observations
is given in Table 1. The HCN-derived values are a fac-
tor of 2-3 larger than the N2-derived values, showing
enrichment of the heavier isotope of nitrogen in HCN.

Photo-induced isotopic fractionation has been pro-
posed to explain this 15N enrichment [8]. When in-
corporating in a photochemical model high-resolution
photoabsorption cross sections for 14N14N and
14N15N, isotope-selective shielding allows more dis-
sociative photons for 14N15N to penetrate deeper into
Titan’s atmosphere, resulting in higher photolytic effi-
ciency for 14N15N than for 14N14N, therefore, leading
to a higher HC15N production rate.

However, previous calculations give a
HC14N/HC15N ratio of 23, which is smaller than
the observed value by a factor of ∼3. An additional
source of atomic nitrogen in the upper atmosphere
was then invoked to obtain the observed ratio. With a
14N/15N = 183 - 260, the N input is constrained to be
in the range (1 − 2) × 109 cm−2 s−1. This value, in
agreement with the understanding of N2 dissociation

by Saturnian magnetospheric ion/electron impact at
that time, is now believed to be overestimated by
about two orders of magnitude [5], which implies that
the origin of the 14N/15N fractionation needs to be
reevaluated.

2 Photochemical model
The 1-dimensional photochemical model of Titan used
in this investigation is adapted from several elements
described previously. The background atmosphere (in-
cluding 14N14N and 14N15N), eddy diffusion coeffi-
cient and aerosol distribution are based on Cassini ob-
servations [18, 6]. The chemical network includes hy-
drocarbons [16], nitrogen [19] and oxygen [4] bear-
ing species and takes into account both neutral and
ion chemistry [15]. Detailed calculations for the en-
ergy deposition of photons and photoelectrons are per-
formed, which include high-resolution temperature-
dependent cross-sections for the absorption and dis-
sociation of 14N14N and 14N15N [5].

In order to make the reaction lists, we start from
our 14N chemistry and generate analogous reactions
in which 14N is replaced by 15N. Because they do not
impact N chemistry, we do not include reactions with
oxygen species and negative ions. We also leave out
reactions where 15N bearing species would react with
each other (i.e. 15N + C2N and N + C15

2 N are taken
into account but not 15N + C15

2 N). The total rate coef-
ficient is taken to be that of the analogous 14N reaction,
i.e. we neglect mass-dependent kinetic isotope effects,
since replacing a 14N with 15N represents only a 7%
increase in mass. Reactions in which both reactants
contain nitrogen, or in which a species contains more
than one nitrogen atom, creates special problems and
some general rules have to be applied, which is the
main uncertainty behind this procedure.
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Table 1: 14N/15N isotopic ratio in N2 and HCN.

Formula
N2 (thermosphere) 193.5± 21.5 (a)
N2 (troposphere) 188± 16 (b) 147.5± 7.5 (c) 183± 5 (d) 167.7± 0.6 (e)
HCN (stratosphere) 65± 5 (f) 72± 9∗; 94± 13∗∗ (g) 56± 8 (h) 76± 6 (i)
∗Assuming the temperature profile from [7]; ∗∗Assuming the temperature profile from [2].
(a) INMS [17]; (b) INMS extrapolated to surface [17]; (c) INMS extrapolated to surface [9]; (d) GCMS

[12]; (e) GCMS [13]; (f) IRAM [11]; (g) SMA [3]; (h) CIRS [14]; (i) Herschel [1].

3 Results and conclusions
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Figure 1: Modeled HC14N and HC15N vertical density
profiles (bottom axis) and associated HC14N/HC15N
ratio (top axis). The boxes represent the observed
14N/15N isotopic ratio in HCN (see Table 1).

Figure 1 shows the simulated 14N/15N isotope ratio
in HCN, which exhibits a constant value of 51 from
700 to 150 km. This profile is in good agreement with
the CIRS value of 56 ± 8, which shows no evidence
for vertical variations [14]. However, an average of
the four consistent observations (the higher value of
Gurwell [3] is at odds with the other values) gives a
slightly higher value of ∼67. More observations are
needed to constrain the vertical profile of HC15N at
mid-latitudes as well as potential temporal or latitudi-
nal variations. Observations of the 14N/15N in other
species, in particular HC3N, would be of great interest
to further constrain the nitrogen chemistry on Titan.
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