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Abstract
In this work we study the water vapor emission by the
the comet 67P/CG, the target of Rosetta mission. In
this work we investigate the physical conditions re-
quired to generate short-lived outbursts in cometary
nuclei. We applied a thermo-physical model [1, 2, 3]
in order to evaluate the temperature of surface and sub-
surface layers and the water flux. Cyclic sublimation
and water condensation in the sub-surface layers, due
to the change of the illumination condition on the sur-
face, is a likely mechanism to explain part of the water
outgassing [5].

1. Introduction and The Model
Comet 67P/Churyumov-Gerasimenko is the target of
Rosetta, an ESA mission launched on March 2014.
Observations from VIRTIS-Rosetta show water ice
(whose stability depends on the local illumination con-
dition) on the surface of the comet, which represents a
localized source for short-lived outbursts [5].

The “Rome model” we applied [1, 2, 3] uses a quasi-
3D approach, in which diurnal and latitudinal temper-
ature variations are calculated by the insulation on the
body. The numerical code computes the heat diffusion
in the porous cometary material, leading to the wa-
ter ice phase transition and sublimation of the volatile
ices. The gas flux is controlled by a conservation mass
equation, according to kinetic theory. The model takes
into account the water ice amorphous-crystalline tran-
sition with the release of gases trapped in the amor-
phous ice, if present. A Crank-Nicholson implicit
scheme is adopted. The code computes a “ critical
radius” representing the largest particle that is likely
to leave the comet and compares it to the dust particle
characteristics (mass and radius), in order to establish
if a dust grain could or not leave the surface (and con-
sequently form a crust). The model accounts for three
different diffusion regimes comparing the mean free

path and the pore diameters (Knudsen, viscous Stokes
and transitional regimes). It assumes the comet as ini-
tially composed by a homogeneous mixture of water
ice, silicatic and organics dust. The dust grains are dis-
tributed in different sizes classes, classes each of ones
with their physical and thermal properties.

In Tab.1 we report the main physical parameters of
our model.

Albedo 0.06 [4]
Dust (Silicates)/Ice 1.5
Dust (Organics)/Ice 2.0
Porosity 0.6
Initial temperature 163
Emissivity 0.9 [2]

Table 1: Main adopted physical parameters values in
SI units.

2. Results
We study the surface and sub-surface layer tempera-
ture and also the water flux emission. In particular we
focus on facet n°14083 of the shape (V4) as represen-
tative of the “neck” region [5] in order to study the
sublimation and re-condensation effect. The facet ex-
amined experienced a “sudden shadow” during its reg-
ular day-night cycle: this introduces an inversion in the
temperature profile vs depth as shown by Figs.1 and 2.
We examined the case with and without self-heating,
both with an ice’s depth of 1 cm beneath the surface.
Self-heating (due to the particular shape of the comet)
has the effect to increase of about 10 K the tempera-
ture. The inversion of the temperature is present in the
first layers of the comet and it is more evident after few
minutes from the “sudden shadow”. The thermal evo-
lution of each facets is followed for several rotations at
heliocentric distance of VIRTIS observations. In par-
ticular, we compare these observations with different
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theoretical curves, characterized by different ice depth
and different initial thermal conductivity of the crust
(see Fig.3). We focus on the facets n°120538-120542
of the shape (V5).

Figure 1: Temperature profile vs depth in case of ice
1cm deep (no self-heating)

Figure 2: Temperature profile vs depth in case of ice
1cm deep (with self-heating)

3. Summary and Conclusions

Our simulations suggest that short-lived outbursts
could be explained by the combined effects of subli-
mation and re-condensation. Ice that refreezes on sub-
surface layers due to change of the conditions of illu-
mination on surface, could contribute to the water flux.
Self-heating seems to be be required to fit with VIR-
TIS observations. We also observe that low thermal
conductivity values lead to temperature profiles com-
patible with the observations. Surface roughness could
increase the temperature of the comet.

Figure 3: Temperature profile vs rotational phase for
different values of thermal conductivity of the crust
and with or not the effect of the self-heating. Black
dots represent VIRTIS observations.
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